一、Spark是一个快速且通用的集群计算平台。
Spark是快速的:
Spark扩充了流行的MapReduce计算模型;
Spark是基于内存的计算。
Spark是通用的:
Spark的设计容纳了其它分布式系统拥有的功能;
批处理,迭代式计算,交互查询和流处理等。
优点:降低了维护成本。
Spark是高度开放的:
Spark提供了Python、Java、Scala、SQL的API和丰富的内置库。
Spark和其它的大数据工具整合的很好,包括Hadoop,kafka等。
二、Spark历史。
诞生于2009年,加州大学伯克利分校RAD实验室的一个研究项目
最初是基于Hadoop MapReduce的
发现MapReduce在迭代式计算和交互式上低效,引入了内存存储
2010年3月份Spark开源
2011年AMP实验室在Spark上开发高级组件,像Spark Streaming
2013年转移到了Apache下,不久便成为顶级项目
三、Spark包括多个紧密集成的组件。
Spark Core:
包含Spark的基本功能,包含任务调度,内存管理,容错机制等。 内部定义了RDDs(弹性分布式数据集)。 提供了很多APIs来创建和操作这些RDDs。 应用场景,为其他组件提供底层的服务。
Spark SQL:
是Spark处理结构化数据的库,就像Hive SQL,Mysql一样。 应用场景,企业中用来做报表统计。
Spark Streaming:
是实时数据流处理组件,类似Storm。 Spark Streaming提供了API来操作实时流数据。 应用场景,企业中用来从Kafka接收数据做实时统计。
MLlib:
一个包含通用机器学习功能的包,Machine learning lib。 包含分类、聚类、回归等,还包括模型评估,和数据导入。 MLlib提供的上面这些方法,都支持集群上的横向扩展。 应用场景,机器学习。
Graphx:
是处理图的库(例如,社交网络图),并进行图的并行计算。 像Spark Streaming,Spark SQL一样,它也继承了RDD API。 它提供了各种图的操作,和常用的图算法,例如PageRank算法。 应用场景,图计算。
Cluster Managers:
就是集群管理,Spark自带一个集群管理是单独调度器。 常见集群管理包括Hadoop YARN,Apache Mesos
紧密集成的优点:
Spark底层优化了,基于Spark底层的组件,也得到了相应的优化。
紧密集成,节省了各个组件组合使用时的部署,测试等时间。
向Spark增加新的组件时,其它组件,可立刻享用新组件的功能。
四、Spark与Hadoop的比较
Hadoop应用场景:
离线处理
对时效性要求不高(中间数据在硬盘上)
Spark应用场景
时效性要求高的场景(中间数据多在内存)
机器学习等领域
Doug Cutting的观点:
这是生态系统,每个组件都有其作用,各善其职即可
Spark不具有HDFS的存储能力,要借助HDFS等持久化数据。
大数据将会孕育出更多的新技术。
五、Spark基础介绍
Spark的Shell:
Spark的shell使你能够处理分布在集群上的数据。
Spark把数据加载到节点的内存中,因此分布式处理可在秒级完成。
快速使迭代式计算,实时查询、分析一般能够在shells中完成。
Spark提供了Python shells和Scala shells。
Python Shell: 在bin/pyspark目录中,使用 exit(); 退出pyspark Scala Shell: 在bin/spark-shell目录中
【注】修改日志级别log4j.rootCategory=WARN,console