pandas

Lesson 1

1.1 Create data:  df = pd.DataFrame(data = BabyDataSet, columns=['Names', 'Births'])

zip()用法:接受任意多个序列作为序列,返回一个元组,如下:

names = ['Bob','Jessica','Mary','John','Mel']
births = [968, 155, 77, 578, 973]
BabyDataSet = list(zip(names,births))
Out:[('Bob', 968), ('Jessica', 155), ('Mary', 77), ('John', 578), ('Mel', 973)]

1.2 Get data:  df = pd.read_csv(Location, names=['Names','Births'])

删除读入的csv文件:

import os
os.remove(Location)

1.3 Prepare data: 

查看dataframe的数据类型:df.dtypes

transform()与apply():

data.groupby(key).transform(np.mean)#形状与data相同

data.groupby(key).apply(np.mean)#形状是分组后的,简化

生成具有固定频率的时间序列pd.data_range(start='12/31/2011', end='12/31/2013', periods=None, freq='D')#D表示以自然日为单位,这个参数用来指定计时单位,比如“5H”代表5小时更新一次

stack()与unstack():

df = pd.DataFrame(data = d, index = i)

stack = df.stack()#print(stack)

print(stack.index)

unstack = df.unstack()#print(unstack)

print(unstack.index)

互换column name 与row name T :

transpose = df.T

1.4 Analysis data

对某一列排序: df.sort_values(['Births'], ascending=False)#降序

选择dataframe的部分:df.loc['name']

                                          df.loc[inclusive:inclusive]

                                          df.loc[df.index[5:],'col']#前面行,后面列名

                                          df.iloc[inclusive:exclusive]#inclusive --index (integer)

输出前5行df.head()

输出后5行:df.tail()

求某列的max、min、avg、median:df['Births'].max()

 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值