MOOC浙江大学陈月、何钦铭老师《数据结构》学习笔记02

对于最大子列问题的几种解决方法。
1、暴力枚举。
不多说,三层循环,时间复杂度为O(n^3)。

2、没名字的算法。

void findSum2(int a[], int n) { 
    int curSum, maxSum = 0;
    int i, j;
    for(i = 0; i < n; i++) {
        curSum = 0;
        for(j = i; j < n; j++) {
            curSum += a[j];
            if(curSum > maxSum)
                maxSum = curSum;
        }
    }
    return maxSum;
}

思路比较好理解,相对于方法一,减少了重复累加元素的麻烦。两层循环,显然,时间复杂度为O(n^2)。

3、分治法。

int Max3( int A, int B, int C ) { /* 返回3个整数中的最大值 */
    return A > B ? A > C ? A : C : B > C ? B : C;
}

int DivideAndConquer( int List[], int left, int right ) { /* 分治法求List[left]到List[right]的最大子列和 */
    int MaxLeftSum, MaxRightSum; /* 存放左右子问题的解 */
    int MaxLeftBorderSum, MaxRightBorderSum; /*存放跨分界线的结果*/

    int LeftBorderSum, RightBorderSum;
    int center, i;

    if( left == right )  { /* 递归的终止条件,子列只有1个数字 */
        if( List[left] > 0 )  return List[left];
        else return 0;
    }

    /* 下面是"分"的过程 */
    center = ( left + right ) / 2; /* 找到中分点 */
    /* 递归求得两边子列的最大和 */
    MaxLeftSum = DivideAndConquer( List, left, center );
    MaxRightSum = DivideAndConquer( List, center+1, right );

    /* 下面求跨分界线的最大子列和 */
    MaxLeftBorderSum = 0; LeftBorderSum = 0;
    for( i=center; i>=left; i-- ) { /* 从中线向左扫描 */
        LeftBorderSum += List[i];
        if( LeftBorderSum > MaxLeftBorderSum )
            MaxLeftBorderSum = LeftBorderSum;
    } /* 左边扫描结束 */

    MaxRightBorderSum = 0; RightBorderSum = 0;
    for( i=center+1; i<=right; i++ ) { /* 从中线向右扫描 */
        RightBorderSum += List[i];
        if( RightBorderSum > MaxRightBorderSum )
            MaxRightBorderSum = RightBorderSum;
    } /* 右边扫描结束 */

    /* 下面返回"治"的结果 */
    return Max3( MaxLeftSum, MaxRightSum, MaxLeftBorderSum + MaxRightBorderSum );
}

int MaxSubseqSum3( int List[], int N )
{ /* 保持与前2种算法相同的函数接口 */
    return DivideAndConquer( List, 0, N-1 );
}

直接发老师的代码拷过来了。主要是来思考时间复杂度。

对于一个数组,我们将其一分为二,分别得到各个部分的最优解。而要得到部分最优解,要继续进行下一次划分。

最小的问题是划分中只剩下一个元素。最后,我们比较这一次划分得到的最优解,从三个值中选择——划分左边的解,划分右边的解,越过划分的解。由此可得,对某个元素为n的问题,有:
T(n)=2T(n/2)+cO(n)
其中T(n/2)为解决左右情况的时间,cO(n)为扫描整个数据而得到越过划分的解的时间。
T(n)=4T(n/4)+2cO(n)
……
假设进行k次分治,找规律可以得到:
T(n)=2^kT(n/2^k)+kcO(n)
最小的问题规模为1,由n/2^k=1,得到k=logn。将k带入到T(n)=2^kT(n/2^k)+kcO(n)中可知:
T(n)=nT(1)+logn*cO(n)
故时间复杂度为nlogn。

此外,老师提到计算一下该算法的空间复杂度(①由递归产生的空间复杂度②算法整体空间复杂度),在这里我借鉴讨论区的答案总结一下。

递归调用了k=logn次,因此占用的空间为S(logn)。而对于整体,会将数组划分至最小,有n个,所以空间复杂度为S(logn)+S(n)=S(n)。

4、在线处理

int MaxSubseqSum4(int A[], int N)
{
    int ThisSum, MaxSum;
    int i;
    ThisSum = MaxSum = 0;
    for(i = 0; i < N; i++) {
        ThisSum += A[i];
        if(ThisSum > MaxSum)
            MaxSum = ThisSum;
        else if(ThisSum < 0)
            ThisSum = 0;
    }
    return MaxSum;
} 

该算法时间复杂度为O(n)。

PS.跑出来的结果。递归算法效果最好,无论是耗时还是内存。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值