KMP

难点:
构造前缀表
利用前缀表比较
如何构建前缀表 KMP算法的过程:
KMP1
KMP2

#include<iostream>
#include<string.h>
#include<malloc.h>
using namespace std;

//pattern:待匹配的子串
//prefix:前缀表
void prefix_table(char *pattern,int *prefix)
{
    int len_pattern=strlen(pattern);
    prefix[0]=0;//0号位默认value值0
    int len=0;//prefix_table存的value值
    int i=1;//从第一位开始
    while(i<len_pattern){
        if(pattern[i]==pattern[len]){
            len++;
            prefix[i]=len;
            i++;
        }
        else{//不相等
            if(len>0){
                 len=prefix[len-1];//斜着对前一位数的prefix_table   
            }else{//len==0 value值==0
                 prefix[i]==len;
                 i++;
             }
        }
    }        
}
//prefix_table数值整体右移一位
void prefix_move(int *prefix,int n)
{
    for(int i=n-1;i>0;i--){
        prefix[i+1]=prefix[i];
    }
    prefix[0]=-1;
}
//text[i] len[text] len_text
//pattern[j] len[pattern] len_pattern
void KMP(char *text,char *pattern)
{    
    int len_text=strlen(text);
    int len_pattern=strlen(pattern);
    int i=0;
    int j=0;
    int*prefix=(int*)malloc(sizeof(int)*len_pattern);
    prefix_table(pattern,prefix);
    prefix_move();
    
    while(i<len_text){
         if(j==len_pattern-1&&pattern[j]==text[i]){
             cout<<"find at"<<i-j<<endl;
             j=prefix[j];
         }
         if(pattern[j]==text[i]){
             i++;
             j++;
         }
         else{
             j=prefix[j];
             if(j=-1){
                 i++;
                 j++;
             }    
         }   
    }
}

int main()
{
    char text[100];
    char pattern[100];
    KMP(text,pattern);
    return 0;
}
我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法。KMP算法是拿来处理字符串匹配的。换句话说,给你两个字符串,你需要回答,B串是否是A串的子串(A串是否包含B串)。比如,字符串A="I'm matrix67",字符串B="matrix",我们就说B是A的子串。你可以委婉地问你的MM:“假如你要向你喜欢的人表白的话,我的名字是你的告白语中的子串吗?” 解决这类问题,通常我们的方法是枚举从A串的什么位置起开始与B匹配,然后验证是否匹配。假如A串长度为n,B串长度为m,那么这种方法的复杂度是O (mn)的。虽然很多时候复杂度达不到mn(验证时只看头一两个字母就发现不匹配了),但我们有许多“最坏情况”,比如,A= "aaaaaaaaaaaaaaaaaaaaaaaaaab",B="aaaaaaaab"。我们将介绍的是一种最坏情况下O(n)的算法(这里假设 m<=n),即传说中的KMP算法。 之所以叫做KMP,是因为这个算法是由Knuth、Morris、Pratt三个提出来的,取了这三个人的名字的头一个字母。这时,或许你突然明白了AVL 树为什么叫AVL,或者Bellman-Ford为什么中间是一杠不是一个点。有时一个东西有七八个人研究过,那怎么命名呢?通常这个东西干脆就不用人名字命名了,免得发生争议,比如“3x+1问题”。扯远了。 个人认为KMP是最没有必要讲的东西,因为这个东西网上能找到很多资料。但网上的讲法基本上都涉及到“移动(shift)”、“Next函数”等概念,这非常容易产生误解(至少一年半前我看这些资料学习KMP时就没搞清楚)。在这里,我换一种方法来解释KMP算法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值