PTA-06-图1 列出连通集

题目描述

给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N−1编号。进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。

输入格式:

输入第1行给出2个整数N(0<N≤10)和E,分别是图的顶点数和边数。随后E行,每行给出一条边的两个端点。每行中的数字之间用1空格分隔。

输出格式:

按照"{ v​1 v​2… vk}"的格式,每行输出一个连通集。先输出DFS的结果,再输出BFS的结果。

输入样例:

8 6
0 7
0 1
2 0
4 1
2 4
3 5

输出样例:

{ 0 1 4 2 7 }
{ 3 5 }
{ 6 }
{ 0 1 2 7 4 }
{ 3 5 }
{ 6 }


知识点
深度优先和广度优先
思路
邻接矩阵存图
for每个顶点 保证图的每个连通子集输出
分别dfs bfs输出

#include<cstdio>
#include<iostream>
#include<queue>
using namespace std;
int N,E;//顶点 边
int a[10][10];//邻接矩阵
queue<int> q;
int bfs_visited[10];
int dfs_visited[10];

void dfs(int vertex)
{
    dfs_visited[vertex]=1;
    cout<<" "<<vertex;
    for(int i=0;i<N;i++){
        if(a[vertex][i]&&!dfs_visited[i]) dfs(i);
    }
}


void bfs(int vertex)
{
    bfs_visited[vertex]=1;
    q.push(vertex);
    cout<<" "<<vertex;
    while(!q.empty()){
        int tmp=q.front();
        q.pop();
        for(int i=0;i<N;i++){
            if(a[tmp][i]&&!bfs_visited[i]){
                cout<<" "<<i;
                bfs_visited[i]=1;
                q.push(i);
            }
        }
    }
}
int main()
{
    int t1,t2;
    cin>>N>>E;
    for(int i=0;i<E;i++){
        cin>>t1>>t2;
        a[t1][t2]=1;
        a[t2][t1]=1;
    }
    for(int i=0;i<N;i++){
        if(!dfs_visited[i]){
            cout<<"{";
            dfs(i);
            cout<<" }"<<endl;
        }
    }
    for(int i=0;i<N;i++){
        if(!bfs_visited[i]){
            cout<<"{";
            bfs(i);
            cout<<" }"<<endl;
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值