题目描述
给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N−1编号。进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。
输入格式:
输入第1行给出2个整数N(0<N≤10)和E,分别是图的顶点数和边数。随后E行,每行给出一条边的两个端点。每行中的数字之间用1空格分隔。
输出格式:
按照"{ v1 v2… vk}"的格式,每行输出一个连通集。先输出DFS的结果,再输出BFS的结果。
输入样例:
8 6
0 7
0 1
2 0
4 1
2 4
3 5
输出样例:
{ 0 1 4 2 7 }
{ 3 5 }
{ 6 }
{ 0 1 2 7 4 }
{ 3 5 }
{ 6 }
知识点
深度优先和广度优先
思路
邻接矩阵存图
for每个顶点 保证图的每个连通子集输出
分别dfs bfs输出
#include<cstdio>
#include<iostream>
#include<queue>
using namespace std;
int N,E;//顶点 边
int a[10][10];//邻接矩阵
queue<int> q;
int bfs_visited[10];
int dfs_visited[10];
void dfs(int vertex)
{
dfs_visited[vertex]=1;
cout<<" "<<vertex;
for(int i=0;i<N;i++){
if(a[vertex][i]&&!dfs_visited[i]) dfs(i);
}
}
void bfs(int vertex)
{
bfs_visited[vertex]=1;
q.push(vertex);
cout<<" "<<vertex;
while(!q.empty()){
int tmp=q.front();
q.pop();
for(int i=0;i<N;i++){
if(a[tmp][i]&&!bfs_visited[i]){
cout<<" "<<i;
bfs_visited[i]=1;
q.push(i);
}
}
}
}
int main()
{
int t1,t2;
cin>>N>>E;
for(int i=0;i<E;i++){
cin>>t1>>t2;
a[t1][t2]=1;
a[t2][t1]=1;
}
for(int i=0;i<N;i++){
if(!dfs_visited[i]){
cout<<"{";
dfs(i);
cout<<" }"<<endl;
}
}
for(int i=0;i<N;i++){
if(!bfs_visited[i]){
cout<<"{";
bfs(i);
cout<<" }"<<endl;
}
}
return 0;
}