半年总结——最是一年春好处,绝胜烟柳满皇都

本文回顾了作者在过去半年中在生活习惯、计算机技能、英语水平及博客写作等方面的成长变化。特别强调了通过持续学习和实践在计算机领域取得的进步,以及如何通过参与小组活动提升英语口语能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    

      这是第三次写半年总结了,还记得第一次写的时候,想了好多天,才写出了一些东西。可能当时的自己无法意识到自己的进步。但事实上,在那半年,学到的东西是最多的,因为米老师的出现,从思想最深处改变了我。


    生活


      现在,我已经意识到了自己的改变,也发现了自己好像真的和家里的很多人不再一样,遇到事情找百度已经成了生活中的习惯,并且这种习惯已经逐渐融入血肉中。虽然网络上信息良莠不齐,但是这么多次查来查去,也有了一定的真伪辨别能力。好像达到了一举两得的功效。


    计算机

      计算机这半年学到了很多东西。机房收费系统强大的逻辑。软件工程的宏观把控,微观分析。UML的串联知识。当然,又重新认识了C#这种语言。像当初刚开始学VB一样一点一点前进,但是在过程中,发现自己接受能力和理解能力和学VB的时候大不相同。老师讲课的时候会通过一些例子来实现,在学VB的时候就只会一味地敲,甚至有时候连代码的意思也不知道。小杨老师讲例子的时候,我会想代码这样实现是不是不够好,怎样能让使用的人更加方便。相信这是软工带给我的隐形收获,而我也充分感受到了自己的成长。


    英语

      英语的变化在于,从听到说。看起来很简单的样子,事实上,真的需要一个适应的过程。从眼睛和耳朵的使用,到耳朵和嘴巴的灵活,对于我来讲是一个艰难的过程,幸亏坚持了下来,不然不知道还要探索多久。这半年参加了两个小组,刚到冬天的时候,参加了EEclub的晨读小组,从每个音标开始练习,纠音,到练习丹田的时候。潜移默化中,说英语的能力不知不觉提高了很多。关键是,玩的很开心。另一个是现在的topic小组,大家一起听AJ故事,一起讨论。用这种方法加强了每个故事的理解,还有通过用英语来描述故事和一些生词,更加增强了自己的表达能力。学英语,兴趣很重要,现在的我有兴趣~


    博客

      从前觉得CSDN博客要好好写,所以经常觉得自己写的不够好,所以就一直写网易。并且,也不约束自己。回头一看,全是心情博客。。。。。也是没谁了。从这半年,我开始逐渐写csdn,逐渐越写越多。到后来逼自己一个月至少写三篇csdn,写与不写,真的只差一个决心。到后来就开始自然而然的把博客写到csdn上。一直想要一个csdn里持之以恒的勋章,某个月刻意写的很勤奋,没有拿到,因为人家要求技术博客的量没有达到。现在一看,那个勋章不知道什么时候自己就躺到那里了。好好约束自己,会让自己比想象中更加棒。



      春暖花开,又是一年重新开始,我们依然在路上。



内容概要:文章详细介绍了HarmonyOS的目录结构及其重要性,从整体框架到核心目录的具体功能进行了全面剖析。HarmonyOS凭借其分布式架构和跨设备协同能力迅速崛起,成为全球操作系统领域的重要力量。文章首先概述了HarmonyOS的背景和发展现状,强调了目录结构对开发的重要性。接着,具体介绍了根目录文件、AppScope、entry和oh_modules等核心目录的功能和作用。例如,AppScope作为全局资源配置中心,存放应用级的配置文件和公共资源;entry目录是应用的核心入口,负责源代码和界面开发。此外,文章还对比了HarmonyOS与Android、iOS目录结构的异同,突出了HarmonyOS的独特优势。后,通过旅游应用和电商应用的实际案例,展示了HarmonyOS目录结构在资源管理和代码组织方面的应用效果。; 适合人群:具备一定编程基础,尤其是对移动操作系统开发感兴趣的开发者,包括初学者和有一定经验的研发人员。; 使用场景及目标:①帮助开发者快速理解HarmonyOS的目录结构,提高开发效率;②为跨设备应用开发提供理论和技术支持;③通过实际案例学习资源管理和代码组织的佳实践。; 其他说明:HarmonyOS的目录结构设计简洁明了,模块职责划分明确,有助于开发者更好地管理和组织代码和资源。随着万物互联时代的到来,HarmonyOS有望在开发便利性和生态建设方面取得更大进展,吸引更多开发者加入其生态系统。
以下是使用R语言证明中心极限定理的步骤: 1.生成服从不同分布的随机样本数据,例如正态分布、均匀分布等。 2.对于每个分布,分别计算样本均值,并将这些均值存储在一个向量中。 3.绘制这些均值的直方图,并将其与相应分布的概率密度函数进行比较。 4.根据中心极限定理,当样本量足够大时,这些均值应该近似于正态分布。 5.为了验证这一点,可以计算这些均值的平均值和标准差,并将其与正态分布的理论平均值和标准差进行比较。 以下是一个使用R语言证明中心极限定理的示例代码: ```R # 生成服从不同分布的随机样本数据 set.seed(123) normal_sample <- rnorm(10000, mean = 10, sd = 2) uniform_sample <- runif(10000, min = 0, max = 20) poisson_sample <- rpois(10000, lambda = 5) # 计算样本均值 normal_mean <- numeric(1000) uniform_mean <- numeric(1000) poisson_mean <- numeric(1000) for (i in 1:1000) { normal_mean[i] <- mean(sample(normal_sample, size = 30, replace = TRUE)) uniform_mean[i] <- mean(sample(uniform_sample, size = 30, replace = TRUE)) poisson_mean[i] <- mean(sample(poisson_sample, size = 30, replace = TRUE)) } # 绘制直方图 par(mfrow = c(3, 1)) hist(normal_mean, breaks = 30, freq = FALSE, main = "Normal Distribution") curve(dnorm(x, mean = 10, sd = 2/sqrt(30)), add = TRUE, col = "red") hist(uniform_mean, breaks = 30, freq = FALSE, main = "Uniform Distribution") curve(dnorm(x, mean = 10, sd = sqrt(20/30)), add = TRUE, col = "red") hist(poisson_mean, breaks = 30, freq = FALSE, main = "Poisson Distribution") curve(dnorm(x, mean = 5, sd = sqrt(5/30)), add = TRUE, col = "red") # 计算均值和标准差 normal_mean_mean <- mean(normal_mean) normal_mean_sd <- sd(normal_mean) uniform_mean_mean <- mean(uniform_mean) uniform_mean_sd <- sd(uniform_mean) poisson_mean_mean <- mean(poisson_mean) poisson_mean_sd <- sd(poisson_mean) # 输出结果 cat("Normal Distribution:\n") cat("Mean of sample means:", normal_mean_mean, "\n") cat("SD of sample means:", normal_mean_sd, "\n") cat("Theoretical mean:", 10, "\n") cat("Theoretical SD:", 2/sqrt(30), "\n\n") cat("Uniform Distribution:\n") cat("Mean of sample means:", uniform_mean_mean, "\n") cat("SD of sample means:", uniform_mean_sd, "\n") cat("Theoretical mean:", 10, "\n") cat("Theoretical SD:", sqrt(20/30), "\n\n") cat("Poisson Distribution:\n") cat("Mean of sample means:", poisson_mean_mean, "\n") cat("SD of sample means:", poisson_mean_sd, "\n") cat("Theoretical mean:", 5, "\n") cat("Theoretical SD:", sqrt(5/30), "\n") ```
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值