【图论专题三】 【NOI2016模拟6.20】没有强联通分量的无聊世界

【NOI2016模拟6.20】没有强联通分量的无聊世界

Description

在这里插入图片描述
Input
在这里插入图片描述

Output

在这里插入图片描述
Sample Input
3 4
1 2
1 3
2 3
3 1

Sample Output
1

Data Constraint
在这里插入图片描述

题解

可以将它拓扑出来,然后然后~~
就没有然后了
所以,我们要换一种思路。
注意 性质 DAG的性质是:一个点的拓扑序只会向比它编号大连边。 所以我们只需要求出一个编号的顺序,然后可以计算代价。这就是基本思路。

第一种方法

我们可以全排列顺序,然后贪心计算代价(应该很简单吧)。取最小值就好了。
预计分数:20分

第二种方法

我们可以状态压缩全排列选择的编号。因为编号的顺序与加入一个编号的答案不产生影响,所以自然可行
预计分数:60分。

第三种方法

对第二种方法进行优化,用位运算、预处理等加速算法二。
预计分数:100分

代码

第二种方法
#include<cstdio>
#include<cstring>
#define N 23
#define M 485
#define MAX_f 4194305
using namespace std;
int n,m,total1;
int th2[N],next[M],head[M],edge[M],f[MAX_f];
bool used[MAX_f];
void insert(int x,int y)
{
	total1++;
	next[total1]=head[x];
	head[x]=total1;
	edge[total1]=y;
}
int main()
{
	freopen("dizzycows.in","r",stdin);
	freopen("dizzycows.out","w",stdout);
	scanf("%d%d",&n,&m);
	th2[0]=1;
	for (int i=1;i<=n;i++)
	{
		th2[i]=th2[i-1]*2;
	}
	for (int i=1;i<=m;i++)
	{
		int x,y;
		scanf("%d%d\n",&x,&y);
		insert(x,y);
	}
	f[0]=0;
	for (int i=1;i<=th2[n];i++)
	{
		f[i]=-999999;
	}
	memset(used,false,sizeof(used));
	for (int i=0;i<=n-1;i++)
	{
		for (int j=0;j<=th2[n];j++)
		{
			if (f[j]>=0&&used[j]==false)
			{
				used[j]=true;
				for (int k=1;k<=n;k++)
				{
					if ((j&th2[k-1])==0)
					{
						int p=j|th2[k-1];
						int cost=0;
						for (int i1=head[k];i1;i1=next[i1])
						{
							int y=edge[i1];
							if ((j&th2[y-1])!=0) cost++;
						}
						if (f[p]<f[j]+cost)
						{
							f[p]=f[j]+cost;
						}
					}
				}
			}
		}
	}
	printf("%d",m-f[th2[n]-1]);
}
第三种方法
#include<cstdio>
#include<cstring>
#define N 23
#define M 485
#define MAX_f 4194305
using namespace std;
int n,m,total1;
int q[N],th2[N],next[M],head[M],edge[M],f[MAX_f],h[MAX_f];
bool used[MAX_f],bz[N][N];
void insert(int x,int y)
{
	total1++;
	next[total1]=head[x];
	head[x]=total1;
	edge[total1]=y;
}
void zhuan(int k)
{
	h[k]=0;
	int q=k;
	int number=0;
	while (q>0)
	{
		if (q%2==1)
		{
			h[k]++;
		}
		number++;
		q=q/2;
	}
}
int main()
{
	freopen("dizzycows.in","r",stdin);
	freopen("dizzycows.out","w",stdout);
	scanf("%d%d",&n,&m);
	th2[0]=1;
	for (int i=1;i<=n;i++)
	{
		th2[i]=th2[i-1]*2;
	}
	for (int i=0;i<=th2[n]-1;i++)
	{
		zhuan(i);
	}
	memset(bz,false,sizeof(bz));
	for (int i=1;i<=m;i++)
	{
		int x,y;
		scanf("%d%d\n",&x,&y);
		q[x]=q[x]+th2[y-1];
	}
	f[0]=0;
	for (int i=1;i<=th2[n]-1;i++)
	{
		f[i]=-999999;
	}
	memset(used,false,sizeof(used));
	int po=0;
	for (int i=0;i<=n-1;i++)
	{
		for (int j=0;j<=th2[n]-1;j++)
		{
			if (f[j]>=0&&used[j]==false)
			{
				used[j]=true;
				for (int k=1;k<=n;k++)
				{
					if ((j&th2[k-1])==0)
					{
						int p=j|th2[k-1];
						int cost=0;
						cost=h[(q[k]&j)];
						if (f[p]<f[j]+cost)
						{
							f[p]=f[j]+cost;
						}
					}
				}
			}
		}
	}
	printf("%d",m-f[th2[n]-1]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值