leecode刷题记录

77:组合: 结果:12.79% / 1% 方法:递归 结论:效率太低,需改进。有时间试试迭代

2019-02-23 10:42:07

阅读数 75

评论数 0

[统计学习方法]学习记录1

感知机 目的: 感知机是一个二类分类器,分类结果为y=(-1,1); 学习一个可以将训练集分类的超平面,(y=wx+b); 学习策略: 定义损失函数:L(w,b)= 初始化系数w,b; 随机选取错分类点; 根据定义的错分类点更新w,b(矫正对于该点的错分...

2019-02-22 10:44:05

阅读数 47

评论数 0

kitti数据标准简述

数据采集: 设备 彩色相机:两台,型号:Point Grey Flea 2 (FL2-14S3C-C) 灰度相机:两台,型号:grayscale PointGrey Flea2 video cameras(10hz,分辨率:1392*512),视场范围:水平方向夹角90度,竖直方向35 ...

2018-12-06 16:10:00

阅读数 706

评论数 1

[论文阅读]:Focal Loss for dense Object Detection

在2D的图像检测的任务中,一种有一个比较明显的问题就是前后景数量上巨大的不平衡,背景一般远远多余前景(也就是目标),这就导致一个问题,就是背景相关的梯度几乎统治了梯度的传播过程,本文提出的Focal Loss 就是试图对损失函数的形态进行更改,从而达到平衡前后景相关的loss在梯度传播中的程度。 ...

2018-10-19 10:44:39

阅读数 173

评论数 3

[论文阅读]:Submanifold Sparse Convolutional Networks(稀疏卷积神经网络)

/* 前言:卷积神经网络(CNN)已经证实在多种任务中具有非常好的效果特别实在图像的分类、检测以及分割等等;并且随着神经网络的深度增加,结果的精度也会有不同程度的增加。但是随着网络加深,计算量的陡升也不可避免。另外就是当CNN由2D的任务扩展为3D的任务时,以及用于稀疏的2D任务的时候,卷积过程中...

2018-10-18 14:13:29

阅读数 2618

评论数 0

关于tensorflow中的Batch normalizition实现多GPU同步

tensorflow中Batch normalization实现多GPU同步 BN层的原理及理解:https://blog.csdn.net/sum_nap/article/details/80770637 在tensorflow框架中,对于BN层的定义在tf.layers.batch_n...

2018-09-20 15:56:07

阅读数 583

评论数 1

常用工具总结(tensorboard,ipad传文件...继续添加)

常用工具总结tensorboard重定位: tensorboard重定位: 在服务器端训练模型,想用tensorboard可视化训练情况,可以使用tensorboard 重定位的方法,具体如下: 1 . 连接ssh时,将服务器的6006端口重定向到自己机器上来: ssh -L 16...

2018-09-20 11:12:00

阅读数 166

评论数 0

[论文阅读] VoxelNet:End-to-End Learning for Point Cloud Based 3D Object Detection

论文简介:该论文为APPLE公司出品,旨在实现端到端的3D LIDAR 点云数据中进行3D目标检测。需要强调的是,该方法仅仅依赖于LIDAR数据即可达到非常高的精度效果,不依赖于多传感器融合。 Contributions: 实现了直接从3D点云数据到目标检测的端到端模型的训练。避免了因人工变...

2018-07-24 16:36:51

阅读数 1606

评论数 0

[论文阅读] DCN:Deformable Converlutional Networks

前言:由于目前的任务是将VOC上的榜单钱几名的算法进行学习和尝试,所以对于这些排名比较靠前的网络所用到的思路一篇一篇的进行整理,如果觉得比较好,就做实验进行尝试。该论文为目前pascal COM4第一名目前提到使用的方法。 论文地址:https://arxiv.org/abs/1703.062...

2018-07-18 14:13:20

阅读数 210

评论数 0

[论文阅读]soft-NMS(弱化的最大抑制)(em...不好使)

前言:由于目前的任务是将VOC上的榜单钱几名的算法进行学习和尝试,所以对于这些排名比较靠前的网络所用到的思路一篇一篇的进行整理,如果觉得比较好,就做实验进行尝试。 本论文的原名为:Improving Object Detection with One line of Code; 论文地址如下:...

2018-07-18 13:58:52

阅读数 2772

评论数 14

PASCAL challenge leaderboard 算法学习(COM4)

前言:pascal对于目标检测的竞赛分为两种:一种在是仅仅在VOC 数据集上训练的网络模型,代指:COM3;另外一种是可以在其他的数据集(例如image net、COCO数据集)上进行pre-train,然后再在VOC的数据集上进行二次训练之后的模型,代值COM4。目前COM3上最佳的结果为:81...

2018-07-11 14:39:19

阅读数 330

评论数 4

PASCAL challenge leaderboard 算法学习(COM3)

前言:pascal对于目标检测的竞赛分为两种:一种在是仅仅在VOC 数据集上训练的网络模型,代指:COM3;另外一种是可以在其他的数据集(例如image net、COCO数据集)上进行pre-train,然后再在VOC的数据集上进行二次训练之后的模型,代值COM4。目前COM3上最佳的结果为:81...

2018-07-11 14:36:32

阅读数 215

评论数 0

object-3D目标检测算法调研(基于激光雷达、kitti数据集)

数据来源:kitti数据集及3d-object 竞赛 链接:http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d 前五名算法简介 截图: 1st: 名称:VoxelNet++ - LiDAR ...

2018-07-09 10:54:03

阅读数 4634

评论数 10

对BN(batch normlization)层的理解

前言:BN层作为当前应用十分广泛的一中抗过拟合、加速模型收敛的手段,效果可以说是十分好用,但是究其原因或者说理解,很多人也是从不同方面有所解释,这篇就尽量包罗的多一些,加上一些自己的理解。有时间就补一点的样子,慢慢丰富 BN层简述:...

2018-06-22 10:52:46

阅读数 450

评论数 0

YOLOv3网络结构细致解析

待填坑。。。

2018-06-04 16:15:50

阅读数 30228

评论数 42

YOLOv3 实练(以VOC2007、2012数据集为例)

源码地址:https://github.com/pjreddie/darknet 训练指导:https://pjreddie.com/darknet/yolo/

2018-05-29 11:09:33

阅读数 6859

评论数 30

2ed:yolo9000、yolov3简介以及yolov3的训练测试

接上次讨论: 关于one-stage 和two-stage 两种框架,那种更好?” 我之前觉得two-stage 的精度上限更高,主要原因系,偏直觉性质的,以及思维惯性导致的(人的直观思维会将检测问题视为two-stage任务),经过老师更正,愈发认为在优化层面,one-stage是对整个解...

2018-05-25 16:19:42

阅读数 2036

评论数 3

R-CNN、fast-RCNN、faster-RCNN到yolo、SSD简要

一、目标检测概述1、目标检测(object detection):指的是发现并且检测出图像中的物体,目标检测一般包含两个任务物体识别:确定图像中物体的类别;位置确定:确定图像中物体的候选框架位置(一般为矩形框)。2、单任务算法简介将目标检测分解为上述两个任务后,单个任务对应的算法主要如下:物体识别...

2018-05-21 09:48:36

阅读数 11897

评论数 1

提示
确定要删除当前文章?
取消 删除
关闭
关闭