把M个同样的苹果放在N个同样的盘子里,允许有的盘子空着不放,问共有多少种不同的分法?(用K表示)5,1,1和1,5,1 是同一种分法。
Input
第一行是测试数据的数目t(0 <= t <= 20)。以下每行均包含二个整数M和N,以空格分开。1<=M,N<=10。
Output
对输入的每组数据M和N,用一行输出相应的K。
Sample Input
1 7 3
Sample Output
8
思路
使用递归解决该问题。
首先,当m<n时,无论如何都会有m-n个盘子是多余的。可以把盘子数量从n减少到m。
其次,当m>=n时,分两种情况讨论:
a) 改变n,使得同样多的苹果放到更少的盘子里,相当于把盘子空出来。设每次都空出来一个盘子,把盘子数量减一。这样传递能推导出空出2个、3个、····、n个的情况。
b) 改变m,由于n不变,在每个盘子上都至少有一个苹果。每个盘子上都有苹果,相当于每个盘子上都没有苹果,所以将苹果个数减去n,变为m-n。
终止条件有二:
a) 当盘子个数为0时,无法放入苹果。此时分发为0种。
b) 当苹果个数为0且盘子个数不为0时,被迫只有1种分法。
#include <stdio.h>
int apples(int, int);
int main()
{
int m, n, t;
scanf("%d", &t);
while (t--)
{
scanf("%d %d", &m, &n);
printf("%d\n", apples(m, n));
}
return 0;
}
int apples(int m, int n)
{
if (m == 0 && n) //终止条件
return 1;
else if (n == 0)
return 0;
else if (m < n) //苹果比盘子少 ,最多只能放m个盘子
return apples(m, m);
else //有一个盘子不放苹果 + 每一个盘子都有苹果
return apples(m, n - 1) + apples(m - n, n);
}