P2480 [SDOI2010] 古代猪文

原题链接

简化题意: 给定 n , G n,G n,G,求 G ∑ d ∣ n C n d m o d 999911659 G^{\sum_{d|n}C_{n}^{d}}mod_{}999911659 GdnCndmod999911659

发现指数可能非常大,而模数为质数,此时可以考虑运用扩展欧拉定理来化简。
对于此题 G ∑ d ∣ n C n d m o d 999911659 = G ∑ d ∣ n C n d m o d 999911658 m o d 999911659 G^{\sum_{d|n}C_{n}^{d}}mod_{}999911659=G^{\sum_{d|n}C_{n}^{d}mod_{}999911658}mod_{}999911659 GdnCndmod999911659=GdnCndmod999911658mod999911659

而发现 999911658 999911658 999911658 却不是质数,此时可以先对其质因数分解,若其质因数的指数均为 1 1 1,那就好办了。可以运用中国剩余定理来求解。

具体的,对于此题,可以得到如下同余方程组:
{ x ≡ ∑ d ∣ n C n d ( m o d 2 ) x ≡ ∑ d ∣ n C n d ( m o d 3 ) x ≡ ∑ d ∣ n C n d ( m o d 4679 ) x ≡ ∑ d ∣ n C n d ( m o d 35617 ) \left\{\begin{matrix}x\equiv\sum_{d|n}C_{n}^{d}(mod_{}2) \\x\equiv\sum_{d|n}C_{n}^{d}(mod_{}3) \\x\equiv\sum_{d|n}C_{n}^{d}(mod_{}4679) \\x\equiv\sum_{d|n}C_{n}^{d}(mod_{}35617) \end{matrix}\right. xdnCnd(mod2)xdnCnd(mod3)xdnCnd(mod4679)xdnCnd(mod35617)

然后就可以运用 Lucas 定理求出这些组合数之和,再上 CRT 求出 x x x,答案就是 G x m o d 999911659 G^xmod_{}999911659 Gxmod999911659

#include<bits/stdc++.h>
using namespace std;
#define int long long
const int N=50010,Mod=999911659,mod=999911658;

int n,G,fac[N],infac[N],prime[N],cnt,d[N],tot,a[N];

int qpow(int a,int b,int p){//快速幂
	int res=1;
	while(b){
		if(b&1) res=res*a%p;
		b>>=1,a=a*a%p;
	}
	return res;
}

void solve(int x){//对mod质因数分解
	for(int i=2;i*i<=mod;i++){
		if(x%i==0){
			prime[++cnt]=i;
			while(x%i==0) x/=i;
		}
	}
	if(x!=1) prime[++cnt]=x;
}

void divide(int x){//求n的约数
	for(int i=1;i*i<=n;i++){
		if(n%i==0){
			d[++tot]=i;
			if(i!=n/i) d[++tot]=n/i;
		}
	}
}

void init(int p){//预处理模p意义下的组合数
	fac[0]=1;
	for(int i=1;i<=p;i++) fac[i]=fac[i-1]*i%p;
	infac[p]=0,infac[p-1]=qpow(fac[p-1],p-2,p);
	for(int i=p-2;i>=0;i--) infac[i]=infac[i+1]*(i+1)%p;
}

int C(int n,int m,int p){
	if(n<m) return 0;
	return fac[n]*infac[m]%p*infac[n-m]%p;
}

int Lucas(int n,int m,int p){//Lucas定理求组合数
	if(m==0) return 1;
	return C(n%p,m%p,p)*Lucas(n/p,m/p,p)%p;
}

void cal(int x){//求每个数的那个sigma
	init(prime[x]);
	for(int i=1;i<=tot;i++){
		a[x]=(a[x]+Lucas(n,d[i],prime[x]))%prime[x];
	}
}

int CRT(){//中国剩余定理
	int ans=0;
	for(int i=1;i<=cnt;i++){
		int m=mod/prime[i],inv=qpow(m,prime[i]-2,prime[i]);
		ans=(ans+a[i]%mod*m%mod*inv%mod)%mod;
	}
	return (ans+mod)%mod;
}

signed main(){
	
	ios::sync_with_stdio(false);
	cin>>n>>G;
	if(G%Mod==0){cout<<0<<endl;return 0;}
	solve(mod),divide(n);
	for(int i=1;i<=cnt;i++) cal(i);
	cout<<qpow(G,CRT(),Mod)<<endl;//终于搞定了TAT
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值