论文Multimodal Unsupervised Image-to-Image Translation

本文提出了一种多模态无监督图像到图像转换的框架,假设图像可以分解为内容和风格两个空间,内容空间是共享的,而风格空间是特定于域的。通过在目标风格空间中采样并结合内容代码,实现源域图像到目标域的多样化迁移。该方法借鉴了非耦合表示学习,并使用双向重建损失和对抗损失作为模型的损失函数。
摘要由CSDN通过智能技术生成

简介:

无监督图像迁移网络是计算机视觉领域的一个技术难题,即给定一张源域图像,如何在没有其他图像样本的情况下,学习相应目标域图像的条件分布。当处理多维条件分布时,现有的方法是在过度简化的假设条件下,通过绘制源域图像和确定的、一对一的目标图像来进行建模。

然而,上述方法无法用来生成给定源域图像的多种多样的目标图像。因此,本文提出了一种多维无监督图像迁移网络框架。

本文中假定代表图像可以被分解成域不变的内容代码,并能捕获特定于域的属性。为了能将图像迁移到另一个域中,本文通过对任意目标域图片的风格空间进行采样,并利用获得的风格代码生成内容代码。

代码:https://github.com/nvlabs/MUNIT

论文方法:

首先假设图像的潜在空间可以分解为内容空间和风格空间。进一步假设,不同领域的图像共享一个共同的内容空间,但不共享风格空间。为了将图像转换为目标域,我们将其内容代码与目标样式空间中的随机样式代码重新组合。
这里写图片描述
上图说明了论文提出方法,首先将每个域Xi中的图像进行编码后放入一个共享的内容空间C和特定于域的风格空间Si,每个编码器还有逆向解码功能。

其次,为了把域X1中的图像(例如一只美洲豹)迁移到域X2中(例如各种家猫),我们在目标风格空间(家猫风格)使用随机的风格代码重组了输入图像的内容代码࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值