题目:http://bailian.openjudge.cn/practice/1017/
0 0 4 0 0 1 7 5 1 0 0 0 0 0 0 0 0 0
2 1
# include <stdio.h>
int main()
{
int N,a,b,c,d,e,f,y,x;
int u[4]={0,5,3,1};
while(1)
{
scanf("%d%d%d%d%d%d",&a,&b,&c,&d,&e,&f);
if(a==0&&b==0&&c==0&&d==0&&e==0&&f==0)
break;
N=f+e+d+(c+3)/4;
y=5*d+u[c%4];
if(b>y)
N+=(b-y+8)/9;
x=36*N-36*f-25*e-16*d-9*c-4*b;
if(a>x)
N+=(a-x+35)/36;
printf("%d\n", N);
}
return 0;
}
解释:
a,b,c,d,e,f:代表1*1 2*2 ……6*6箱子个数
N:总共需要的最小箱子数
y:考虑了3*3 4*4 5*5 6*6 以后 剩余空间最对能装 2*2的个数
x:剩余空间最多能装1*1 的个数 => 用总空间减去已占用的空间来算
解题思路
这个问题描述得比较清楚,我们在这里只解释一下输入输出样例:共有两组有效输入,
第一组表示有 4 个 3*3 的产品和一个 6*6 的产品,此时 4 个 3*3 的产品占用一个箱子,另外
一个 6*6 的产品占用 1 个箱子,所以箱子数是 2;第二组表示有 7 个 1*1 的产品,5 个 2*2
的产品和 1 个 3*3 的产品,我们可以把他们统统放在一个箱子中,所以输出是 1。
分析六个型号的产品占用箱子的具体情况如下:6*6 的产品每个会占用一个完整的箱
子,并且没有空余空间;5*5 的产品每个占用一个新的箱子,并且留下 11 个可以盛放 1*1
的产品的空余空间;4*4 的产品每个占用一个新的箱子,并且留下 5 个可以盛放 2*2 的产品
的空余空间;3*3 的产品情况比较复杂,首先 3*3 的产品不能放在原来盛有 5*5 或者 4*4 的箱子中,那么必须为 3*3 的产品另开新的箱子,新开的箱子数目等于 3*3 的产品的数目除以
4 向上取整;同时我们需要讨论为 3*3 的产品新开箱子时,剩余的空间可以盛放多少 2*2 和
1*1 的产品(这里如果有空间可以盛放 2*2 的产品,我们就将它计入 2*2 的空余空间,等到
2*2 的产品全部装完,如果还有 2*2 的空间剩余,再将它们转换成 1*1 的剩余空间)。我们
可以分情况讨论为 3*3 的产品打开的新箱子中剩余的空位,共为四种情况:第一种,3*3 的
产品的数目正好是 4 的倍数,所以没有空余空间;第二种,3*3 的产品数目是 4 的倍数加 1,
这时还剩 5 个 2*2 的空位和 7 个 1*1 的空位;第三种,3*3 的产品数目是 4 的倍数加 2,这
时还剩 3 个 2*2 的空位和 6 个 1*1 的空位;第四种,3*3 的产品数目是 4 的倍数加 3,这时
还剩 1 个 2*2 的空位和 5 个 1*1 的空位;处理完 3*3 的产品,就可以比较一下剩余的 2*2
的空位和 2*2 产品的数目,如果产品数目多,就将 2*2 的空位全部填满,再为 2*2 的产品打
开新箱子,同时计算新箱子中 1*1 的空位,如果剩余空位多,就将 2*2 的产品全部填入 2*2
的空位,再将剩余的 2*2 的空位转换成 1*1 的空位;最后处理 1*1 的产品,比较一下 1*1
的空位与 1*1 的产品数目,如果空位多,将 1*1 的产品全部填入空位,否则,先将 1*1 的空
位填满,然后再为 1*1 的产品打开新的箱子。