在n个球中,任意取出m个(不放回),求有多少种不同取法。(递归学习)

在n个球中,任意取出m个(不放回),求有多少种不同取法?

熟悉那么?

大家都应该首先想到

我们所学习过的

排列组合!

这题就是典型的组合问题(从不同元素中抽取部分元素的问题)

在这里插入图片描述

        组合(combination),数学的重要概念之一。从n个不同元素中每次取出m个不同元素(0≤m≤n),不管其顺序合成一组,称为从n个元素中不重复地选取m个元素的一个组合。所有这样的组合的总数称为组合数,这个组合数的计算公式为:

在这里插入图片描述

or
在这里插入图片描述

那么我们应该怎么用程序的形式表现出来呢?

这里小编使用

java语言和递归方法

向大家展示。


```java
public class CombinationCatchProblem {
  static int catchball(int n, int m) {

    if (n < m) {  
      return 0;
    }
    if (n == m) {
      return 1;
    }
    if (m == 0) {
      return 1;
    }
    return catchball(n - 1, m - 1) + catchball(n - 1, m);//分两种情况:1、从n中取出的球恰好是m中的;2、从n中取出的球不是m中的
  }

  public static void main(String[] args) {
    System.out.println(catchball(10, 3));
  }
}

在这里插入图片描述在这里插入图片描述


主要思想就是:分两种情况进行递归求和:

                1、从n中取出的球恰好是m中的;

                2、从n中取出的球不是m中的


									如果对你有帮助就转发一下吧~谢谢
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

星谐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值