Leetcode 300. Longest Increasing Subsequence

Given an unsorted array of integers, find the length of longest increasing subsequence.

For example,
Given [10, 9, 2, 5, 3, 7, 101, 18],
The longest increasing subsequence is [2, 3, 7, 101], therefore the length is 4. Note that there may be more than one LIS combination, it is only necessary for you to return the length.

Your algorithm should run in O(n2) complexity.

Follow up: Could you improve it to O(n log n) time complexity?


题目大意:给你一个未排序的整数数组,找到最长的递增,举个例子

[10, 9, 2, 5, 3, 7, 101, 18],最长的递增子序列是 [2, 3, 7, 101],因此长度是4,你需要做的就是返回最长的长度。


分析:

这个数组未排序,很自然的一个想法是从当前的一个数字出发,在它之后寻找有多长的递增序列,这个想法我没实现下去,

因为我觉得我没想全,比如说从2出发,然后到了5,然后再到7,再到101,[2,5,7,101],由于这里最长长度是4,

所以刚好碰巧没啥问题,但是最长长度不一定是顺着下去的,你还需要考虑跳过5,从3找下去的可能,

[2,3,7,101]也是长度为4,我的起初想法是设置一个标志位,但这样的话循环高至三层了,索性就不去想了。换思路。

查了资料有挺多的做法,这里我列一个好懂的想法,

设置一个lis数组,lis[i]代表是到下标为i的为之前,最长的递增序列长度,两层循环,

外层循环选择当前下标,内层循环更新当前下标的lis值,内层循环

每次都是从头开始到当前下标为止。

public int lengthOfLIS(int[] nums) {
        if(nums.length==0)
        	return 0;
        
        int[] lis=new int[nums.length];
        int max=0;
        for(int i=0;i<nums.length;i++)
        {
        	int localMax=0;
        	
        	for(int j=0;j<i;j++) {
        		if(localMax<lis[j]&&nums[j]<nums[i])
        			localMax=lis[j];
        	}
        	lis[i]=localMax+1;
        	max=Math.max(max, lis[i]);
        }
        return max;
    }


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值