【动态规划】之求连续子数组的最大和

题目描述:
输入一个整形数组,数组里有正数也有负数。
数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。
例如 : int data[6]={1,-2,3,5,-1,2}
连续子数组的最大和为{3,5,-1,2}=9

【首先说下最简单的解法,暴力求解】

对于每一个数 xi x i ,依次按顺序加上其后所有数S={ xi x i xi+xi+1 x i + x i + 1 ,   xi+xi+1+xi+2 x i + x i + 1 + x i + 2 , …… { xi+xi+1+.....xn x i + x i + 1 + . . . . . x n } },求出以这个数为起点,最大值 Mi M i
最后比较所有的 M M ,最大值即为所求;

int baolimax(int arr[],int n)// 暴力求解 【对n个整型元素数组arr求解】
{
    int M[n]={0};//存储每一趟最大值
    for(int i=0;i<n;i++)
    {
        int sum,max;
        sum=max=arr[i];
        for(int j=i+1;j<n;j++)//j起始是i+1; 从i一直加到n;求出以i为起点的最大; 
        {
            sum=sum+arr[j]; 
            if(sum>max)
            max=sum;
        }
        M[i]=max;
    }

    //对M求最大值;
    int Mmax=M[0]; 
    for(int i=0;i<n;i++)
    {
        if(M[i]>Mmax)
        Mmax=M[i];
    }
    return Mmax;
}

**

【动态规划】

**
设sum[i]为以第i个元素结尾且和最大的连续子数组。假设对于元素i,所有以它前面的元素结尾的子数组的长度都已经求得,那么以第i个元素结尾且和最大的连续子数组实际上,要么是以第i-1个元素结尾且和最大的连续子数组sum[i-1]加上这个元素a[i],要么是只包含第i个元素a[i],即

sum[i]=max(sum[i1]+a[i],a[i])
可以通过判断sum[i-1] + a[i]是否大于a[i]来做选择 {sum[i-1]+a[i]>a[i]} ,而这实际上等价于判断sum[i-1]是否大于0。由于每次运算只需要前一次的结果,因此并不需要像普通的动态规划那样保留之前所有的计算结果,只需要保留上一次的即可,因此算法的时间和空间复杂度都很小。

得状态转移方程为:

这里写图片描述

代码如下:

int dpmax(int arr[],int n)//【对n个整型元素数组arr求解】
{
    int max,sum[n];
    max=sum[0]=arr[0];//对i=0进行初始直接赋值
    for(int i=1;i<n;i++)//注意:从i=1开始
    {
        if(sum[i-1]>0)
        {
            sum[i]=sum[i-1]+arr[i];
        }
        else
        {
            sum[i]=arr[i];
        }
        if(sum[i]>max) max=sum[i];
    }
return max;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Casionx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值