CvMat,Mat和IplImage之间的转化和拷贝

1、CvMat之间的复制

//注意:深拷贝 - 单独分配空间,两者相互独立  
CvMat* a;  
CvMat* b = cvCloneMat(a);   //copy a to b  

2、Mat之间的复制

复制代码
//注意:浅拷贝 -  不复制数据只创建矩阵头,数据共享(更改a,b,c的任意一个都会对另外2个产生同样的作用)
Mat a;
Mat b = a; //a "copy" to b
Mat c(a); //a "copy" to c

//注意:深拷贝
Mat a;
Mat b = a.clone(); //a copy to b
Mat c;
a.copyTo(c); //a copy to c
复制代码

3、CvMat转Mat

复制代码
//使用Mat的构造函数:Mat::Mat(const CvMat* m, bool copyData=false);    默认情况下copyData为false
CvMat* a;
//注意:以下三种效果一致,均为浅拷贝
Mat b(a);    //a "copy" to b
Mat b(a, false);    //a "copy" to b
Mat b = a;    //a "copy" to b

//注意:当将参数copyData设为true后,则为深拷贝(复制整个图像数据)
Mat b = Mat(a, true); //a copy to b
复制代码

4、Mat转CvMat

复制代码
//注意:浅拷贝
Mat a;
CvMat b = a; //a "copy" to b

//注意:深拷贝
Mat a;
CvMat *b;
CvMat temp = a; //转化为CvMat类型,而不是复制数据
cvCopy(&temp, b); //真正复制数据 cvCopy使用前要先开辟内存空间
复制代码

==========IplImage与上述二者间的转化和拷贝===========

1、IplImage之间的复制
这个不赘述了,就是cvCopy与cvCloneImage使用区别,贴张网上的图:

2、IplImage转Mat

复制代码
//使用Mat的构造函数:Mat::Mat(const IplImage* img, bool copyData=false);    默认情况下copyData为false
IplImage* srcImg = cvLoadImage("Lena.jpg");
//注意:以下三种效果一致,均为浅拷贝
Mat M(srcImg);
Mat M(srcImg, false);
Mat M = srcImg;

//注意:当将参数copyData设为true后,则为深拷贝(复制整个图像数据)
Mat M(srcImg, true);
复制代码

3、Mat转IplImage

复制代码
//注意:浅拷贝 - 同样只是创建图像头,而没有复制数据
Mat M;
IplImage img = M;
IplImage img = IplImage(M);
//深拷贝
cv::Mat img2;
IplImage imgTmp = img2;
IplImage *input = cvCloneImage(&imgTmp);
复制代码

4、IplImage转CvMat

复制代码
//法一:cvGetMat函数
IplImage* img;
CvMat temp;
CvMat* mat = cvGetMat(img, &temp);    //深拷贝
//法二:cvConvert函数
CvMat *mat = cvCreateMat(img->height, img->width, CV_64FC3);    //注意height和width的顺序
cvConvert(img, mat);    //深拷贝
复制代码

5、CvMat转IplImage

复制代码
//法一:cvGetImage函数
CvMat M;
IplImage* img = cvCreateImageHeader(M.size(), M.depth(), M.channels());
cvGetImage(&M, img);    //深拷贝:函数返回img
//也可写成
CvMat M;
IplImage* img = cvGetImage(&M, cvCreateImageHeader(M.size(), M.depth(), M.channels()));
//法二:cvConvert函数
CvMat M;
IplImage* img = cvCreateImage(M.size(), M.depth(), M.channels());
cvConvert(&M, img);    //深拷贝
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值