- 博客(15)
- 资源 (4)
- 收藏
- 关注
原创 GitHub2016年前深度学习论文:Deep-Learning-Papers-Reading-Roadmap
这里分享下Github上的关于2016年深度学习:Deep-Learning-Papers-Reading-Roadmap - GitHub论文总结链接:https://github.com/floodsung/Deep-Learning-Papers-Reading-Roadmap - GitHub上的py下载程序有问题,调用读取”README.md”内文件会报错“’gbk’ codec c...
2018-07-08 23:42:25 776
原创 一张图带你看懂系列--Github神经风格迁移代码简图
GIthub神经风格迁移项目地址:https://github.com/cysmith/neural-style-tf 不得不说VGG19训练好的mat格式网络参数就500MHz,我的I5渣渣笔记本完成1次风格迁移耗费4.5h,与之对比使用SqueezeNet的CS231N的A3的神经风格迁移1次只耗费10min,差距巨大,但是相应的使用VGG19的训练出来的风格融合度更高,可能是由于设置参...
2018-07-04 22:03:18 1567
原创 一张图带你看懂系列--CS231N-Assignment3-RNN&LSTM代码结构图
根据cs231n assignment2总结出来的流程图,将所有模块代码进行了整理。
2018-07-01 00:08:56 858
原创 一张图带你看懂系列--CS231N-Assignment2-全连接层&CNN码结构图
cs231n课程的作业1,根据作业内的文件分布和函数功能做出以上流程图。
2018-07-01 00:06:48 718
原创 TF_Skill_01
TensorFlow的一般使用流程构造图:Tensor(类似向量)的使用+operations(图节点)+Graph(构造图)。张量的使用,存储中间结果;Tensor("name",shape,dtype);构建时并不持有值,运行时持有有效值。计算图:tf.session(会话)+Tensor的执行要通过sess.run(graph)来执行。import tensorflow ...
2018-06-29 21:46:35 157
原创 cs231n-Lecture12
CS231N–可视化和理解一、概念定义:可视化的方法可以让我们理解神经网络是如何工作的。不同层的神经网络结果如何,卷积核/滤波器起什么作用。1. 可视化激活函数值对激活函数的激活可以在激活值中找到对应的图片的轮廓。神经网络实现优化实现2. 可视化卷积核/滤波器CNN实现的是自动训练出不同类型的滤波器,取代以前的手工设定滤波器第一层滤波器拥有不...
2018-06-29 21:39:57 359
原创 cs231n-Lecture10
CS231N–RNN一、RNN总体分类:循环神经网络,包含了多种结构,适用不同的情况,处理不同的序列,主要分类为:one2one:Vanilla neural network,最简单的循环神经网络结构one2many:Image Captioning(图像标注),用于图像生成多个序列的单词many2one:Sentiment Classification(情感分类),用于将...
2018-06-29 21:27:11 528
原创 cs231n-Lecture9
CS231N–迁移学习之分割、定位与检测一、概念定义:语义分割将图像不同层次都用轮廓分割出来,实时分割问题更多的是多任务问题,在不同层次上实时的进行图像分割。分类与定位,分类问题简单的降图像中识别的物体种类输出,定位给出不同物体所在图片中的坐标,可能需要标注框来框出物体所在目标,而分类+定位问题就是两者皆有目标检测,与分类问题进行比较,主要区别是多物体分类与定位,解决地问题可...
2018-06-29 21:13:06 235
原创 cs231n-Lecture8
CS231N–DL Software一、CPU和GPU对比:二、常用深度学习框架:常用的深度学习框架必备的关键点:易制作的大规模计算图(Computational Graphs);易根据计算图计算梯度;使用GPU。TensorFlow的Tensorboard可视化程度较高,风场方面观察计算图中的权重变化。实际的使用过程详见代码,这里不做整理。三、TensorFl...
2018-06-29 21:08:07 178
原创 cs231n-Lecture7&8
CS231N–卷积神经网络一、卷积神经网络历史-略过具体参照Lecture5已经总结CNN适用于分类、恢复、探测、分割,随着GPU的兴起和互联网数据的增大,CNN现在是无处不在。以风格迁移为例。 二、卷积神经网络层典型的神经网络构成:卷积层+池化层+全连接层1. 卷积层 - 三维卷积与一维、二维的卷积意义是一样的,都是滤波器的作用,传统的都是需要人为设...
2018-06-29 21:06:19 298
原创 cs231n-Lecture6
CS231N–神经网络训练(下)一、精细优化1. SGD的优化问题(1) 不同维度梯度问题 比如在趋近最优解的维度,梯度下降的慢,而在垂直方式梯度下降的快,梯度下降的和方向在偏离正确方向太远,这样优化过程中逼近最优解速度慢,这也是SGD速度最慢的原因 (2) 极值点问题 当遇到局部最小值点及鞍点时,SGD会陷入局部最优;由于数据维度较大,很难存在局部最小值...
2018-06-29 20:54:23 363
原创 cs231n-Lecture5
CS231N–神经网络训练一、作业讲解Assignment2:CNN训练作业,预训练与细调,CNN先在ImageNet进行大量数据训练,在在小批量数据中进行训练。1. CNN的迁移学习可以先使用CNN在比如ImageNet这样的大数据集上先进行预训练,熟练好权重和超参数,去掉最上方的分类层,看成是一个固定特征提取器自己的数据量较少的时候可以仅仅替换最后的分类层;...
2018-06-29 20:43:15 403
原创 cs231n-lecture4
CS231N–反向传播与神经网络一、反向传播1.计算图实例(1) SVM; (2) AlexNet卷积神经网络; (3) 神经网络图灵机 2.反向传播–链式求导法则(核心)(1)实例1:一个简单的计算(2)实例2:一个相对复杂的计算如果知道sigmoid函数的求导公式,那么可以极大地简化该过程(3)神经网络中的反向传播在分支处通过一级级的链...
2018-06-29 20:35:51 201
原创 cs231n-lecture2&3
CS231N–图像分类管道一、cs231n课程指引作业1:KNN;线性分类器,SVM、Softmax;两层神经网络;图像特征Python + Numpy教程:http://cs231n.github.io/python-numpy-tutorial/Google Cloud教程:http://cs231n.github.io/gce-tutorial/ 二、图像分类–C...
2018-06-29 20:22:26 410
原创 cs231n-Lecture1
CS231–IntroducitonCV–深度学习–神经网络–卷积神经网络 - 计算机视觉是人工智能中发展最迅速的内容。 - 2016年思科估计80%的网络数据是像素数据,进入到一个信息爆炸的时代,原因:1、互联网载体;2、传感器–手机、摄像头 - 互联网暗物质–数据冗余,像素信息很难理解,就像银河系内的暗物质。 - YouTube服务器接受150h video/60s。人眼很...
2018-06-27 23:06:29 480
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人