2017年8月_计算机学报_RCS

本文提出一种基于区域化压缩感知(RCS)的方法,用于无线传感器网络(WSN)中的数据收集。该方法通过随机划分网络区域,并选择中心节点来接收区域内其他节点的采样值,进而利用压缩感知技术获取区域测量值。通过这种方式,可以减少中心区域的负载,延长网络寿命。
摘要由CSDN通过智能技术生成
2017年8月_计算机学报_RCS
{
	标题{
		基于区域化压缩感知的无线传感器网络数据收集方法
	}
	摘要{
		//随机划分网络区域,选择中心节点,接收其他节点采样值,中心节点使用压缩感知方法获得区域测量值
		1.区域测量矩阵的设计--->中心区域载荷过重问题
		2.采样停止时机的选择--->避免不必要采样
		//对比直接传输、分布式压缩感知、混合算法
	}
	1.引言{
		压缩感知 		CS
		简单压缩感知 	Plain CS
		非压缩感知 		no-CS
		块压缩感知		BCS
		区域化压缩感知  RCS
		基于Zigbee网络
	}
	2.相关背景{
		所有传感器采集的数据表示向量
		Sink节点接收M次测量值
		Sink节点接收一定量的测量值--->精确恢复出每个传感器采集的原始数据。
		重构精度与传输方式无关
		不合适的传输方式会产生不必要的传输能耗
	}
	3.研究目的和现状{
		测量过程:采样时对原始数据进行加权求和得到相应的测量值
		信号的采样、传输、重构
		//小规模网络使用压缩感知增加传输量
		减少中心区域的负载、延长网络寿命		
	}
	4.区域化压缩感知RCS方法{
		1.基本思想{
			区域中心节点的选择采用对候选集的随机调度
			轮转标准可基于时间、能量、实时性、服务质量等、
			候选集由靠近Sink节点的边界节点组成
			//传输次数等于区域节点跳数和
			RCS方法没有相关性条件的约束
		}
		2.RCS方法分析{
			区域中心节点间可以相互融合
			区域中心节点不直接转发其他中心节点的测量值
			区域化使更多节点被视为边界节点
			区域大小不取决于传输路由、不会因为链路的改变调整区域大小
			//区域划分的参考标准
			能量消耗取决于路径跳数,构建跳数少的路由
		}
	}
	5.基于RCS的优化{
		1.实际应用中的两个问题{
			区域中心节点使用区域测量矩阵对采样数据进行加权求和,产生测量值
			设计合适大小的区域测量矩阵
			限制区域中心节点存储的测量值和数据包大小
			采样次数取决于重构准确度
		}
		2.区域测量矩阵设计原则
		3.采样停止原则{
			多增加一次测量对精度并不会有明显的提高
			评估重构结果等于原始信号的概率
		}
	}
	6.实验与分析{
		1.数据集
		2.稀疏变化
		3.重构准确度的测度标准{
			//归一化均方误差
		}
		4.实验结果{
			1.RCS与当前方法{
				//验证4种方法的传输次数随着节点数的变化情况
				直接传输		DT
				分布式压缩编码	DCS
				混合算法 		MA
				//传输次数急剧增加:节点个数达到临界点,区域节点必须使用2个数据包装载测量值
			}
			2.区域测量矩阵设计原则
		}
	}
	7.结论
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值