2017年8月_计算机学报_RCS
{
标题{
基于区域化压缩感知的无线传感器网络数据收集方法
}
摘要{
//随机划分网络区域,选择中心节点,接收其他节点采样值,中心节点使用压缩感知方法获得区域测量值
1.区域测量矩阵的设计--->中心区域载荷过重问题
2.采样停止时机的选择--->避免不必要采样
//对比直接传输、分布式压缩感知、混合算法
}
1.引言{
压缩感知 CS
简单压缩感知 Plain CS
非压缩感知 no-CS
块压缩感知 BCS
区域化压缩感知 RCS
基于Zigbee网络
}
2.相关背景{
所有传感器采集的数据表示向量
Sink节点接收M次测量值
Sink节点接收一定量的测量值--->精确恢复出每个传感器采集的原始数据。
重构精度与传输方式无关
不合适的传输方式会产生不必要的传输能耗
}
3.研究目的和现状{
测量过程:采样时对原始数据进行加权求和得到相应的测量值
信号的采样、传输、重构
//小规模网络使用压缩感知增加传输量
减少中心区域的负载、延长网络寿命
}
4.区域化压缩感知RCS方法{
1.基本思想{
区域中心节点的选择采用对候选集的随机调度
轮转标准可基于时间、能量、实时性、服务质量等、
候选集由靠近Sink节点的边界节点组成
//传输次数等于区域节点跳数和
RCS方法没有相关性条件的约束
}
2.RCS方法分析{
区域中心节点间可以相互融合
区域中心节点不直接转发其他中心节点的测量值
区域化使更多节点被视为边界节点
区域大小不取决于传输路由、不会因为链路的改变调整区域大小
//区域划分的参考标准
能量消耗取决于路径跳数,构建跳数少的路由
}
}
5.基于RCS的优化{
1.实际应用中的两个问题{
区域中心节点使用区域测量矩阵对采样数据进行加权求和,产生测量值
设计合适大小的区域测量矩阵
限制区域中心节点存储的测量值和数据包大小
采样次数取决于重构准确度
}
2.区域测量矩阵设计原则
3.采样停止原则{
多增加一次测量对精度并不会有明显的提高
评估重构结果等于原始信号的概率
}
}
6.实验与分析{
1.数据集
2.稀疏变化
3.重构准确度的测度标准{
//归一化均方误差
}
4.实验结果{
1.RCS与当前方法{
//验证4种方法的传输次数随着节点数的变化情况
直接传输 DT
分布式压缩编码 DCS
混合算法 MA
//传输次数急剧增加:节点个数达到临界点,区域节点必须使用2个数据包装载测量值
}
2.区域测量矩阵设计原则
}
}
7.结论
}
2017年8月_计算机学报_RCS
最新推荐文章于 2024-06-20 14:20:22 发布
本文提出一种基于区域化压缩感知(RCS)的方法,用于无线传感器网络(WSN)中的数据收集。该方法通过随机划分网络区域,并选择中心节点来接收区域内其他节点的采样值,进而利用压缩感知技术获取区域测量值。通过这种方式,可以减少中心区域的负载,延长网络寿命。
摘要由CSDN通过智能技术生成