题目描述:
将一系列给定数字顺序插入一个初始为空的小顶堆H[]。随后判断一系列相关命题是否为真。命题分下列几种:
- x is the root:x是根结点;
- x and y are siblings:x和y是兄弟结点;
- x is the parent of y:x是y的父结点;
- x is a child of y:x是y的一个子结点。
输入格式:
每组测试第1行包含2个正整数N(≤ 1000)和M(≤ 20),分别是插入元素的个数、以及需要判断的命题数。下一行给出区间[−10000,10000]内的N个要被插入一个初始为空的小顶堆的整数。之后M行,每行给出一个命题。题目保证命题中的结点键值都是存在的。
输出格式:
对输入的每个命题,如果其为真,则在一行中输出T,否则输出F。
输入样例:
5 4
46 23 26 24 10
24 is the root
26 and 23 are siblings
46 is the parent of 23
23 is a child of 10
输出样例:
F
T
F
T
代码如下:
#include<iostream>
using namespace std;
int n;
void adjust(int i,int a[])
{
if(i==1) return;
while(i!=1){
if(a[i]<a[i/2]){
swap(a[i],a[i/2]);
i/=2;
}
else break;
}
}
bool judge1(int k,int a[])
{
if(k==a[1]) return true;
return false;
}
bool judge2(int k,int p,int a[])
{
int n1=0,n2=0;
for(int i=1;i<=n;i++){
if(a[i]==k) n1=i;
if(a[i]==p) n2=i;
}
if((n1-n2)==1&&n2%2==0||(n1-n2)==-1&&n1%2==0) return true;
return false;
}
bool judge3(int k,int p,int a[])
{
int n1=0,n2=0;
for(int i=1;i<=n;i++){
if(a[i]==k) n1=i;
if(a[i]==p) n2=i;
}
if((n1*2)==n2||(n1*2+1)==n2) return true;
return false;
}
int main()
{
int m,k,p;
scanf("%d%d",&n,&m);
int a[n+1];
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
adjust(i,a);
}
string s;
for(int i=0;i<m;i++){
cin>>k>>s;
if(s=="and"){
cin>>p>>s>>s;
judge2(k,p,a)==true?printf("T\n"):printf("F\n");
}
else{
cin>>s;
if(s=="a"){
cin>>s>>s>>p;
judge3(p,k,a)==true?printf("T\n"):printf("F\n");
}
else{
cin>>s;
if(s=="root"){
judge1(k,a)==true?printf("T\n"):printf("F\n");
}
else{
cin>>s>>p;
judge3(k,p,a)==true?printf("T\n"):printf("F\n");
}
}
}
}
return 0;
}
来总计一下:
1)首先,边输入边进行堆排序,构成一个小顶堆。
2)既然要判断四个语句的正确与否就要看出四个语句之间的不同之处,进而执行不同的函数。
3)最后测试点1一直通过不了,差了很多最后发现是因为,要有个求余判断
if((n1-n2)= =1&&n2%2= =0||(n1-n2)= =-1&&n1%2==0) return true;
该测试点是:路径比较长,而且数据互相交错,有负数,是一个很复杂的组合。