一.Hive聚合运算 - GROUP BY
GROUP BY用于分组
- Hive基本内置聚合函数与GROUP BY一起使用
- 如果没有指定GROUP BY子句,则默认聚合整个表
除聚合函数外,所选的其他列也必须包含在GROUP BY中
- GROUP BY支持使用CASE WHEN或表达式
select category, max(offervalue) from offers group by category;
-- group by使用表达式
select if(category > 4000, 'GOOD', 'BAD') as newcat,max(offervalue) from offers group by category if(category > 4000, 'GOOD', 'BAD');
Hive聚合运算 - HAVING
- HAVING:对GROUP BY聚合结果的条件过滤
- 可以避免在GROUP BY之后使用子查询
HAVING之后可以使用表达式,但不建议使用,会造成效率大大降低
-- having使用
select sex_age.age from employee group by sex_age.age having count(*) <= 1;
-- 使用子查询代替having
select a.age from ( select count(*) as cnt, sex_age.age
from employee group by sex_age.age ) a where a.cnt <= 1;
Hive聚合运算 - 基础聚合
基础聚合函数
- max, min, count, sum, avg
- max(distinct col1)、avg(col2)等
- collect_set, collect_list:返回每个组列中的对象集/列表
注意事项
- 一般与GROUP BY一起使用
- 可应用于列或表达式
对NULL的count聚合为0,即过滤了NULL
二.窗口函数 - 概述
窗口函数是一组特殊函数
- 扫描多个输入行来计算每个输出值,为每行数据生成一行结果
- 可以通过窗口函数来实现复杂的计算和聚合
语法
Function (arg1,..., arg n) OVER ([PARTITION BY <...>] [ORDER BY <....>] [<window_clause>])
- PARTITION BY类似于GROUP BY,未指定则按整个结果集
只有指定ORDER BY子句之后才能进行窗口定义
- 可同时使用多个窗口函数
- 过滤窗口函数计算结果必须在外面一层
- 按功能可划分为:排序,聚合,分析
1.窗口函数 - 排序
ROW_NUMBER()
- 对所有数值输出不同的序号,
序号唯一连续
RANK()
- 对相同数值,输出相同的序号,
下一个序号跳过
(1,1,3)
DENSE_RANK()
- 对相同数值,输出相同的序号,
下一个序号连续
(1,1,2)
NLITE(n)
- 将有序的数据集合平均分配到n个桶中(若不能均分一般第一个桶数据会多些), 将桶号分配给每一行,根据桶号,选取前或后 n分之几的数据
- 举例:若想查询订单记录的前1/3记录,可用NLITE(3)平均分成三份再套个查询语句使用where条件桶号=1即可实现
PERCENT_RANK()
- (目前排名- 1)/(总行数- 1),值相对于一组值的百分比排名
-- 窗口函数 排序类
SELECT
name, dept_num, salary,
ROW_NUMBER() OVER () AS row_num,
RANK() OVER (PARTITION BY dept_num ORDER BY salary) AS rank,
DENSE_RANK() OVER (PARTITION BY dept_num ORDER BY salary) AS dense_rank,
PERCENT_RANK() OVER(PARTITION BY dept_num ORDER BY salary) AS percent_rank,
NTILE(2) OVER(PARTITION BY dept_num ORDER BY salary) AS ntile
FROM employee_contract
ORDER BY dept_num, salary;
2. 窗口函数 - 聚合
COUNT()
计数,可以和DISTINCT一起用
SELECT
COUNT(DISTINCT a) OVER (PARTITION BY c ORDER BY d ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING)
SUM():求和
AVG():平均值
MAX()/MIN(): 最大/小值
从Hive 2.1.0开始在OVER子句中支持聚合函数
SELECT rank() OVER (ORDER BY sum(b)) FROM T GROUP BY a;
-- 窗口函数 聚合类
SELECT
name, dept_num, salary,
COUNT(*) OVER (PARTITION BY dept_num) AS row_cnt,
--COUNT(DISTINCT *) OVER (PARTITION BY dept_num) AS row_cnt_dis,
SUM(salary) OVER(PARTITION BY dept_num ORDER BY dept_num) AS deptTotal,
SUM(salary) OVER(ORDER BY dept_num) AS runningTotal1,
SUM(salary) OVER(ORDER BY dept_num, name rows unbounded preceding) AS runningTotal2,
AVG(salary) OVER(PARTITION BY dept_num) AS avgDept,
MIN(salary) OVER(PARTITION BY dept_num) AS minDept,
MAX(salary) OVER(PARTITION BY dept_num) AS maxDept
FROM employee_contract
ORDER BY dept_num, name;
3.窗口函数 - 分析
CUME_DIST
- 小于等于当前值的行数/分组内总行数
LEAD/LAG(column,n)
- 某一列进行往前/后第n行值(n可选,默认为1)
这个函数很有用,可用于分析频率,比如lag(购买时间,1),就可知道每次购买时间的频率
FIRST_VALUE
- 对该列到目前为止的首个值
LAST_VALUE
- 到目前行为止的最后一个值
-- 窗口函数 分析类
SELECT
name, dept_num, salary,
LEAD(salary, 2) OVER(PARTITION BY dept_num ORDER BY salary) AS lead,
LAG(salary, 2, 0) OVER(PARTITION BY dept_num ORDER BY salary) AS lag,
FIRST_VALUE(salary) OVER (PARTITION BY dept_num ORDER BY salary) AS first_value,
LAST_VALUE(salary) OVER (PARTITION BY dept_num ORDER BY salary) AS last_value_default,
LAST_VALUE(salary) OVER (PARTITION BY dept_num ORDER BY salary RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) AS last_value
FROM employee_contract
ORDER BY dept_num, salary;
4.窗口函数 - 窗口定义(必须使用order by)
窗口定义由[<window_clause>]子句描述
- 用于进一步细分结果并应用分析函数
支持两类窗口定义
- 行类型窗口
- 范围类型窗口
RANK、NTILE、DENSE_RANK、CUME_DIST、PERCENT_RANK、LEAD、LAG和ROW_NUMBER函数不支持与窗口子句一起使用
行窗口:根据当前行之前或之后的行号确定的窗口
- ROWS BETWEEN <start_expr> AND <end_expr>
<start_expr>可以为下列值
- UNBOUNDED PRECEDING : 窗口起始位置(分组第一行)
- CURRENT ROW:当前行
- N PRECEDING/FOLLOWING:当前行之前/之后n行
<end_expr>可以为下列值
- UNBOUNDED FOLLOWING : 窗口结束位置(分组最后一行)
- CURRENT ROW:当前行
- N PRECEDING/FOLLOWING:当前行之前/之后n行
SELECT
name, dept_num AS dept, salary AS sal,
MAX(salary) OVER (PARTITION BY dept_num ORDER BY name ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) win1,
MAX(salary) OVER (PARTITION BY dept_num ORDER BY name ROWS BETWEEN 2 PRECEDING AND UNBOUNDED FOLLOWING) win2,
MAX(salary) OVER (PARTITION BY dept_num ORDER BY name ROWS BETWEEN 1 PRECEDING AND 2 FOLLOWING) win3,
MAX(salary) OVER (PARTITION BY dept_num ORDER BY name ROWS BETWEEN 2 PRECEDING AND 1 PRECEDING) win4,
MAX(salary) OVER (PARTITION BY dept_num ORDER BY name ROWS BETWEEN 1 FOLLOWING AND 2 FOLLOWING) win5,
MAX(salary) OVER (PARTITION BY dept_num ORDER BY name ROWS BETWEEN CURRENT ROW AND CURRENT ROW) win6,
MAX(salary) OVER (PARTITION BY dept_num ORDER BY name ROWS BETWEEN CURRENT ROW AND 1 FOLLOWING) win7,
MAX(salary) OVER (PARTITION BY dept_num ORDER BY name ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING) win8,
MAX(salary) OVER (PARTITION BY dept_num ORDER BY name ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) win9,
MAX(salary) OVER (PARTITION BY dept_num ORDER BY name ROWS BETWEEN UNBOUNDED PRECEDING AND 1 FOLLOWING) win10,
MAX(salary) OVER (PARTITION BY dept_num ORDER BY name ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) win11,
MAX(salary) OVER (PARTITION BY dept_num ORDER BY name ROWS 2 PRECEDING) win12
FROM employee_contract ORDER BY dept, name;
范围窗口是取分组内的值在指定范围区间内的行
- 该范围值/区间必须是数字或日期类型
- 目前只支持一个ORDER BY列
SUM(close) RANGE BETWEEN 500 PRECEDING AND 1000 FOLLOWING
-- 假设当前close值的行数为3000,语句将包含分区内范围从2500到4000的行
-- 示例
SELECT name, dept_num AS dept, salary AS sal,
MAX(salary) OVER (PARTITION BY dept_num ORDER BY name ROWS BETWEEN 2 PRECEDING AND CURRENT ROW) win1,
salary - 1000 as sal_r_start,salary as sal_r_end,
MAX(salary) OVER (PARTITION BY dept_num ORDER BY name RANGE BETWEEN 1000 PRECEDING AND CURRENT ROW) win13
FROM employee_contract ORDER BY dept, name;