LangChain福尔摩斯探案助手实现

当 AI 遇上福尔摩斯:基于 LangChain 打造智能案件分析系统

发表于 2025-1-2 · 作者:[Andrew]

在这里插入图片描述

“当你排除了所有的不可能,剩下的,不管多么难以置信,都一定是真相。” —— 夏洛克·福尔摩斯

引言

在贝克街221B,福尔摩斯用他敏锐的观察力和缜密的推理解开一个个谜题。而今天,我们将借助人工智能的力量,让这位传奇侦探的方法在数字时代重现光彩。本文将详细介绍如何使用 LangChain 框架和通义千问大模型构建一个智能案件分析系统,展示 AI 如何成为现代的福尔摩斯。

🔍 系统概览

核心技术栈

  • LangChain: 0.0.350+
  • DashScope: 1.10.0+
  • Flask: 2.0.1
  • SQLAlchemy: 1.4.23
  • MySQL: 8.0+

处理流程

当一个案件文档到达我们的数字化贝克街221B时,会经历以下分析过程:

  1. 文件接收与预处理

    • 多格式文件支持(txt, pdf, doc, docx)
    • 智能编码识别
    • 文本规范化处理
  2. AI 驱动的演绎分析

    • 提示词工程
    • LLM 调用链
    • 结构化输出解析
  3. 信息提取与整理

    • 实体识别
    • 关系抽取
    • 时间线构建
  4. 知识图谱构建

    • 实体关系可视化
    • 案件线索追踪
    • 交互式探索

🛠️ LangChain 实现细节

1. 自定义 LLM 实现

我们通过继承 LangChain 的基类来实现通义千问的接入:

from langchain.llms.base import LLM
from typing import Any, List, Optional

class DashScopeLLM(LLM):
    """通义千问 LLM 实现"""
    api_key: str
    model_name: str = "qwen-plus"
    temperature: float = 0.7
    top_p: float = 0.8
    max_tokens: int = 8000  # 通义千问的最大token限制

    @property
    def _llm_type(self) -> str:
        return "dashscope"

    def _call(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[Any] = None,
        **kwargs: Any,
    ) -> str:
        """核心调用实现"""
        messages = [{"role": "user", "content": prompt}]
        response = dashscope.Generation.call(
            model=self.model_name,
            messages=messages,
            api_key=self.api_key,
            result_format='message',
            temperature=self.temperature,
            top_p=self.top_p,
            max_tokens=self.max_tokens,
            **kwargs,
        )
        
        if response.status_code == 200:
            return response.output.choices[0].message.content
        else:
            raise Exception(f"API调用失败: {response.code} - {response.message}")

2. 提示词工程

使用 LangChain 的 PromptTemplate 来构建结构化的提示词:

from langchain.prompts import PromptTemplate
from langchain.output_parsers import ResponseSchema, StructuredOutputParser

# 定义输出模式
response_schemas = [
    ResponseSchema(name="characters", description="提取的人物信息列表"),
    ResponseSchema(name="cases", description="提取的案件信息列表"),
    ResponseSchema(name="appearances", description="提取的出场信息列表")
]
output_parser = StructuredOutputParser.from_response_schemas(response_schemas)

# 创建提示词模板
template = """
系统指令:你是一个专业的案件分析助手,擅长从案件文档中提取关键信息。

用户输入:{user_input}

请分析以上内容,提取关键信息,包括:
1. 所有出现的人物及其特征
2. 案件的基本信息(时间、地点、性质等)
3. 人物与案件的关联关系

{format_instructions}
"""

prompt = PromptTemplate(
    template=template,
    input_variables=["user_input"],
    partial_variables={"format_instructions": output_parser.get_format_instructions()}
)

3. 构建推理链

使用 LangChain 的新式管道操作符来构建推理链:

from langchain_core.runnables import RunnablePassthrough

# 构建处理链
chain = prompt | llm | output_parser

# 执行推理
result = chain.invoke({
    "user_input": case_content
})

4. 错误处理与重试机制

实现智能的错误处理和重试逻辑:

from tenacity import retry, stop_after_attempt, wait_exponential

@retry(
    stop=stop_after_attempt(3),
    wait=wait_exponential(multiplier=1, min=4, max=10)
)
def analyze_with_retry(content: str) -> dict:
    """带重试机制的分析函数"""
    try:
        result = chain.invoke({"user_input": content})
        validate_output(result)  # 验证输出格式
        return result
    except Exception as e:
        logger.error(f"分析失败: {str(e)}")
        raise

📊 数据模型设计

实体关系模型

使用 SQLAlchemy 实现的核心数据模型:

from sqlalchemy import create_engine, Column, Integer, String, ForeignKey, JSON
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import relationship

Base = declarative_base()

class Character(Base):
    """人物模型"""
    __tablename__ = 'characters'
    
    id = Column(String(50), primary_key=True)
    name = Column(String(100), nullable=False)
    age = Column(String(50))
    residence = Column(String(200))
    occupation = Column(String(100))
    cases_involved = Column(JSON)
    
    appearances = relationship("Appearance", back_populates="character")

class Case(Base):
    """案件模型"""
    __tablename__ = 'cases'
    
    id = Column(String(50), primary_key=True)
    time = Column(String(100))
    location = Column(String(200))
    reporter = Column(String(100))
    detective = Column(String(100))
    evidence = Column(JSON)
    status = Column(String(50))

🎯 实际应用案例

案例:红发会奇案分析

1. 原始输入
威尔逊先生今天来到贝克街221B,他说自己在红发会工作,每周能获得4英镑的报酬,
只需要在办公室抄写大英百科全书...
2. AI 分析结果
{
  "characters": [
    {
      "id": "char_wilson",
      "name": "Jabez Wilson",
      "occupation": "当铺老板",
      "cases_involved": ["case_red_headed_league"]
    },
    {
      "id": "char_clay",
      "name": "John Clay",
      "occupation": "助手(伪装身份)",
      "cases_involved": ["case_red_headed_league"]
    }
  ],
  "cases": [
    {
      "id": "case_red_headed_league",
      "time": "1890年秋",
      "location": "伦敦市区",
      "status": "已破获"
    }
  ]
}
3. 生成的关系图谱
雇主
伪装成助手
真实目的
掩护
Jabez Wilson
红发会
John Clay
银行金库

💡 技术亮点

  1. LangChain 创新应用

    • 自定义 LLM 实现
    • 结构化输出控制
    • 链式处理流程
  2. 智能分析能力

    • 多维度信息提取
    • 关系网络构建
    • 时间线梳理
  3. 系统可靠性

    • 多重错误处理
    • 智能重试机制
    • 数据一致性保证

🚀 未来优化方向

  1. 向量化存储

    • 使用 LangChain 的向量存储接口
    • 实现相似案件检索
    • 构建案件知识库
  2. 对话能力增强

    • 添加记忆组件
    • 实现多轮推理
    • 支持追问和澄清
  3. 可视化升级

    • 交互式时间线
    • 动态关系图谱
    • 证据链可视化

结语

通过将福尔摩斯的演绎法与 LangChain 框架相结合,我们不仅创造了一个智能的案件分析工具,更展示了 AI 技术在专业领域应用的无限可能。这个项目证明,当经典遇上现代,当人类智慧遇上人工智能,我们能够创造出更加强大的分析工具。


技术栈:

  • 🌐 Flask + SQLAlchemy
  • 🤖 LangChain + DashScope
  • 📊 MySQL
  • 🎨 HTML5 + CSS3 + JavaScript

参考资源:


标签: #AI #LangChain #福尔摩斯 #案件分析 #数据可视化 #通义千问


欢迎在评论区分享您的想法和建议!如果您对某个技术点特别感兴趣,也可以留言讨论。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值