跳跃链表是一种随机化数据结构,基于并联的链表,其效率可比拟于二叉查找树(对于大多数操作需要O(log n)平均时间),并且对并发算法友好。
基本上,跳跃列表是对有序的链表增加上附加的前进链接,增加是以随机化的方式进行的,所以在列表中的查找可以快速的跳过部分列表(因此得名)。所有操作都以对数随机化的时间进行。
实现原理:
跳跃表的结构是:假如底层有10个节点, 那么底层的上一层理论上就有5个节点,再上一层理论上就有2个或3个节点,再上一层理论上就有1个节点。所以从这里可以看出每一层的节点个数为其下一层的1/2个元素,以此类推。从这里我们可以看到,从插入时我们只要保证上一层的元素个数为下一层元素个数的1/2,我们的跳跃表就能成为理想的跳跃表。那么怎么才能保证我们插入时上层元素个数是下层元素个数的1/2呢,?很简单 抛硬币就可以解决了,假设元素X要插入跳跃表,最底层是肯定要插入X的,那么次低层要不要插入呢,我们希望上层元素个数是下层的1/2,那么我们有1/2的概率要插入到次低层,这样就来抛硬币吧,正面就插入,反面就不插入,次次底层相对于次低层,我们还是有1/2的概率插入,那么就继续抛硬币吧 , 以此类推元,素X插入第n层的概率是(1/2)的n次。这样,我们能在跳跃表中插入一个元素了。
代码结构:
节点类:
String key 键值 对跳跃表的操作都是根据键值进行的
Int value 实际值
Node up,down,left,right; 每个节点都有四个方向
String tou;
String wei; 每层链表的头和尾节点
跳跃表类:
Head 头节点
Tail 尾结点
H 层数
Size 元素个数
Random 随机数,用来确定需不需要增加层数 即:掷硬币
findF () 按从小到大的顺序找到应该插入的位置 插入排序法
Add () 添加节点函数,在最底层插入结点后,进行掷硬币来确定是否需要曾增加层数,直到掷硬币不能增加层数为止,增加层数的同事需要把增加之后的节点进行连接。
Find() 根据跳跃表进行查找并打印路线。查找从最上层开始然后找到被查找节点的前个节点小于被查找节点,然后被查找节点的后一个节点大于其被查找节点,则从被查找节点的前一个节点向下走down,然后继续向右查找,直到找到为止。
引用:http://www.java123.net/936905.html
1.
跳跃表的引入
1.
我们知道,普通单链表查询一个元素的时间复杂度为O(n),即使该单链表是有序的,我们也不能通过2分的方式缩减时间复杂度。
如上图,我们要查询元素为55的结点,必须从头结点,循环遍历到最后一个节点,不算-INF(负无穷)一共查询8次。那么用什么办法能够用更少的次数访问55呢?最直观的,当然是新开辟一条捷径去访问55。
如上图,我们要查询元素为55的结点,只需要在L2层查找4次即可。在这个结构中,查询结点为46的元素将耗费最多的查询次数5次。即先在L2查询46,查询4次后找到元素55,因为链表是有序的,46一定在55的左边,所以L2层没有元素46。然后我们退回到元素37,到它的下一层即L1层继续搜索46。非常幸运,我们只需要再查询1次就能找到46。这样一共耗费5次查询。
那么,如何才能更快的搜寻55呢?有了上面的经验,我们就很容易想到,再开辟一条捷径。
如上图,我们搜索55只需要2次查找即可。这个结构中,查询元素46仍然是最耗时的,需要查询5次。即首先在L3层查找2次,然后在L2层查找2次,最后在L1层查找1次,共5次。很显然,这种思想和2分非常相似,那么我们最后的结构图就应该如下图。
我们可以看到,最耗时的访问46需要6次查询。即L4访问55,L3访问21、55,L2访问37、55,L1访问46。我们直觉上认为,这样的结构会让查询有序链表的某个元素更快。那么究竟算法复杂度是多少呢?
如果有n个元素,因为是2分,所以层数就应该是log n层 (本文所有log都是以2为底),再加上自身的1层。以上图为例,如果是4个元素,那么分层为L3和L4,再加上本身的L2,一共3层;如果是8个元素,那么就是3+1层。最耗时间的查询自然是访问所有层数,耗时logn+logn,即2logn。为什么是2倍的logn呢?我们以上图中的46为例,查询到46要访问所有的分层,每个分层都要访问2个元素,中间元素和最后一个元素。所以时间复杂度为O(logn)。
至此为止,我们引入了最理想的跳跃表,但是如果想要在上图中插入或者删除一个元素呢?比如我们要插入一个元素22、23、24……,自然在L1层,我们将这些元素插入在元素21后,那么L2层,L3层呢?我们是不是要考虑插入后怎样调整连接,才能维持这个理想的跳跃表结构。我们知道,平衡二叉树的调整是一件令人头痛的事情,左旋右旋左右旋……一般人还真记不住,而调整一个理想的跳跃表将是一个比调整平衡二叉树还复杂的操作。幸运的是,我们并不需要通过复杂的操作调整连接来维护这样完美的跳跃表。有一种基于概率统计的插入算法,也能得到时间复杂度为O(logn)的查询效率,这种跳跃表才是我们真正要实现的。
容易实现的跳跃表
1.
容易实现的跳跃表,它允许简单的插入和删除元素,并提供O(logn)的查询时间复杂度,以下我们简称为跳跃表。
先讨论插入,我们先看理想的跳跃表结构,L2层的元素个数是L1层元素个数的1/2,L3层的元素个数是L2层的元素个数的1/2,以此类推。从这里,我们可以想到,只要在插入时尽量保证上一层的元素个数是下一层元素的1/2,我们的跳跃表就能成为理想的跳跃表。那么怎么样才能在插入时保证上一层元素个数是下一层元素个数的1/2呢?很简单,抛硬币就能解决了!假设元素X要插入跳跃表,很显然,L1层肯定要插入X。那么L2层要不要插入X呢?我们希望上层元素个数是下层元素个数的1/2,所以我们有1/2的概率希望X插入L2层,那么抛一下硬币吧,正面就插入,反面就不插入。那么L3到底要不要插入X呢?相对于L2层,我们还是希望1/2的概率插入,那么继续抛硬币吧!以此类推,元素X插入第n层的概率是(1/2)的n次。这样,我们能在跳跃表中插入一个元素了。
代码:
package 跳跃表;
import java.util.*;
public class SkipList {
public Node head; //头节点
public Node tail; //尾结点
public int h; //层数
public int size; //元素个数
public Random rand; //每次的随机数用来确定需不需要增加层数
public SkipList(){
Node p1 = new Node(Node.tou,0);
Node p2 = new Node(Node.wei, 0);
head=p1;
tail=p2;
head.setRight(tail);
tail.setLeft(head);
h=0;
size=0;
rand = new Random();
}
public boolean isEmpty(){
if(size==0){
return true;
}
return false;
}
//找到需要插入位置的前一个节点
public Node findF(String k){
Node temp;
temp=head;
while(true){
while(temp.getRight().key!=Node.wei&&temp.getRight().key.compareTo(k)<=0){
/*
* 当链表最底层不为空的时候,从当前层向尾部方向开始查找,直到查找temp.getRight的下一个值大于 当前k的值为止,此时temp小于或等于当前k的值
* 要插入的位置即为temp之后的位置了
*/
temp=temp.getRight();
}
if(temp.getDown()!=null){
temp=temp.getDown();
}else{
break;
}
}
return temp; //找到节点并返回
}
public int add(String k, int v){
Node temp, temp1;
temp=findF(k);
int i; //当前层数
if(k.equals(temp.getKey())){
System.out.println("对象属性完全相同无法添加!");
int a=temp.value;
temp.value=v;
return a;
}
temp1=new Node(k,v);
temp1.setLeft(temp);
temp1.setRight(temp.getRight());
temp.getRight().setLeft(temp1);
temp.setRight(temp1);
i=0;
while(rand.nextDouble()<0.5){ //进行随机,是否需要 在上层添加
if(i>=h){ //若当前层数超出了高度,则需要另建一层
Node p1 ,p2 ;
h=h+1;
p1=new Node(Node.tou,0);
p2=new Node(Node.wei,0);
p1.setRight(p2);
p1.setDown(head);
p2.setLeft(p1);
p2.setDown(tail);
head.setUp(p1);
tail.setUp(p2);
head=p1;
tail=p2;
}
while(temp.getUp() == null){
temp=temp.getLeft();
}
temp=temp.getUp();
Node node=new Node(k,v);
node.setLeft(temp);
node.setRight(temp.getRight());
node.setDown(temp1);
temp.getRight().setLeft(node);
temp.setRight(node);
temp1.setUp(node);
temp1=node;
i=i+1;
}
size=size+1;
return 0;
}
//节点查找
public Node find(String k){
Node temp=head;
Node node;
node=temp;
System.out.println("查找路线"); //用于测试
while(temp!=null){
while(node.getRight().key!=Node.wei&&node.getRight().getKey().compareTo(k)<=0){//&&node.getRight().getValue()!=v
node=node.getRight();
System.out.print("--->"+node.getKey());
}
if(node.getDown()!=null){
node=node.getDown();
System.out.print("--->"+node.getKey());
}else{
if(node.key.equals(k)){//&&node.getRight().value==v
//node.setValue(111111111); //修改
System.out.println("--->"+node.getKey());
System.out.print("--->"+node.getValue());
return node;
}
return null;
}
}
return null;
}
//节点删除
public void delNode(String k){ //调用查找函数,删除最底层的某个节点,并把其节点的左右相连,和链表操作一样,只是其上方若有则都需要调整
Node temp=find(k);
while(temp!=null){
temp.getLeft().setRight(temp.getRight());
temp.getRight().setLeft(temp.getLeft());
temp=temp.getUp();
}
}
public void print(){
Node node;
Node node1=head;
while(node1!=null){
int k=0;
node=node1;
while(node!=null){
System.out.print(node.getKey()+"\t");
k++;
node=node.getRight();
}
System.out.print("\t");
System.out.print("("+k+")");
//System.out.print(node.getKey());
System.out.println();
//node=node1.getDown();
node1=node1.getDown();
}
}
}
class Node{
public String key;
public int value;
public Node up, down,left , right;
public static String tou=new String("--头--");
public static String wei=new String("--尾--");
public Node(String k, int v){
this.key=k;
this.value=v;
up=down=left=right=null;
}
public void setUp(Node up){
this.up=up;
}
public Node getUp(){
return up;
}
public void setDown(Node down){
this.down=down;
}
public Node getDown(){
return down;
}
public void setLeft(Node left){
this.left=left;
}
public Node getLeft(){
return left;
}
public void setRight(Node right){
this.right=right;
}
public Node getRight(){
return right;
}
public void setKey(String k){
this.key=k;
}
public String getKey(){
return key;
}
public void setValue(int v){
this.value=v;
}
public int getValue(){
return value;
}
}
package 跳跃表;
public class Test {
public static void main(String[] args){
SkipList s = new SkipList();
// s.add("AAA", 122);
int i=0;
for(;i<30;i++){ //随机数字进行测试
s.add(String.valueOf(i), i);
}
s.print();
System.out.println("\n\n----------\n\n\n");
if(s.find("22")!=null){ //查找
System.out.println("\nOK");
}else{//找不到
System.out.println("\nfalse");
}
s.delNode("0"); //删除
s.print();
}
}
测试结果: