题目:
Given a binary tree, imagine yourself standing on the right side of it, return the values of the nodes you can see ordered from top to bottom.
For example:
Given the following binary tree,
1 <--- / \ 2 3 <--- \ \ 5 4 <---
You should return [1, 3, 4]
.
给一棵二叉树,然后要求从右边看,求每一层的最右边的那个节点,将其保存进list中。
题解:
其实就是层次遍历,然后每次遍历到一层的结束时候,将最后的那一个节点保存进list中。这题的思路和LeetCode Minimum Depth of Binary Tree http://blog.csdn.net/sun_wangdong/article/details/49159253 相似,用了一个小技巧,就是用两层循环,外面的那层循环是将节点保存进临时的linkedlist的长度,没将一个节点压出来的时候,它的长度就减一,然后内层循环是每一层的长度,也就是每一层的节点个数,每遍历一层之后,就得计算这一层的长度,并且每次在遍历的时候,都将这一层的长度减为0的时候,也就是最右边的那个节点保存进list中,也就是我们需要求的,这个技巧非常好,有利于我们解决类似于层次遍历的题。
public class Solution
{
public List<Integer> rightSideView(TreeNode root)
{
LinkedList<Integer> list = new LinkedList<Integer>();
LinkedList<TreeNode> nodes = new LinkedList<TreeNode>();
if(root == null)
return list;
else
{
nodes.add(root);
//list.add(root.val);
int length = nodes.size();
while(!nodes.isEmpty())
{
while(length-- > 0)
{
//if(length == 0)
//System.out.println(length);
TreeNode node = nodes.peek();
nodes.poll();
if(length == 0)
{
System.out.println(node.val);
list.add(node.val);
}
if(node.left != null)
nodes.add(node.left);
if(node.right != null)
nodes.add(node.right);
}
length = nodes.size();
System.out.println(length);
}
return list;
}
}
}