为什么svm算法在求解过程中,需要将原始问题转化为对偶问题?

探讨了对偶问题如何简化支持向量机的计算复杂度,通过将原始问题的约束转化为对偶问题的等式约束,引入核函数,问题的解决从求解特征向量w转变为求解比例系数a,从而大幅降低计算复杂度,提升求解效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 对偶问题将原始问题中的约束转为了对偶问题中的等式约束
  2. 方便核函数的引入
  3. 改变了问题的复杂度。由求特征向量w转化为求比例系数a,在原始问题下,求解的复杂度与样本的维度有关,即w的维度。在对偶问题下,只与样本数量有关。
  4. 求解更高效,因为只用求解比例系数a,而比例系数a只有支持向量才为非0,其他全为0.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值