高级算法梳理之GBDT(梯度提升决策树)

上一部分讲了集成程序的概念,其中介绍了了bagging优化的随机森林算法,本文讲述基于Boosting算法的梯度提升决策树算法(GBDT)。

1、加法模型

我们将 f ( x ) = ∑ m = 1 M β m b ( x ; γ m ) f\left ( x \right )=\sum_{m=1}^{M}\beta _{m}b\left ( x;\gamma _{m} \right ) f(x)=m=1Mβmb(x;γm)定义为加法模型,其中 b ( x ; γ m ) b\left ( x;\gamma _{m} \right ) b(x;γm)为基函数, γ m \gamma _{m} γm为基函数的参数, β m \beta _{m} βm为基函数的系数,它表示基函数在加法模型中的重要程度。

2、前向分布算法

基于上述加法模型,当给定数据以及损失函数时,学习加法模型就变成了极小化经验损失函数,即 m i n β m , γ m ∑ i = 1 N L ( y i , f ( x ) ) \underset{\beta _{m},\gamma _{m}}{min}\sum_{i=1}^{N}L\left ( y_{i}, f\left ( x \right )\right ) βm,γmmini=1NL(yi,f(x))这里需要极小化每一步生成的基函数的损失之和,但是这是一件很困难的事情,为了解决这个问题,提出了前向分布算法。前向分布算法的一个优化思想是,由于学习的是加法模型,如果能从前向后每次只学习一个基函数及其系数,逐步逼近优化目标函数(极小化经验损失函数)。这样就可以降低复杂度,使得每一步只需要优化
m i n β , γ ∑ i = 1 N L ( y i , β ( x i ; γ ) ) \underset{\beta,\gamma}{min}\sum_{i=1}^{N}L\left ( y_{i}, \beta \left ( x_{i} ;\gamma \right )\right ) β,γmini=1NL(yi,β(xi;γ))
也就是说,我们每次学习一个基学习器,只针对基学习器进行优化,来达到降低损失函数的目的。基本的算法流程
在这里插入图片描述
在这里插入图片描述
这样我们就将同时求解从m=1到M所有参数 β m \beta_{m} βm γ m \gamma_{m} γm的优化问题简化为逐次求解各个 β m \beta_{m} βm γ m \gamma_{m} γm的优化问题。

3、梯度提升树(GBDT)

3.1、训练过程

GBDT通过多轮迭代,使用前向分布算法,对弱分类器的要求一般是足够简单,并且是低方差和高偏差,一般会选择CART(分类回归树),并且每个分类回归树都不会太深,最终的总分类器 是将每轮训练得到的弱分类器加权求和得到的(也就是加法模型)

3.2、迭代思路

假设我们前一轮迭代得到的强学习器是 f t − 1 ( x ) f_{t-1}\left ( x \right ) ft1(x),损失函数为 L ( y , f t − 1 ( x ) ) L\left ( y,f_{t-1}\left ( x \right ) \right ) L(y,ft1(x)),我们本轮的目的就是找到一个CART回归树模型的弱学习器 h t ( x ) h_{t}\left ( x \right ) ht(x),使得本轮的损失函数 L ( y , f t ( x ) ) = L ( y , f t − 1 ( x ) + h t ( x ) ) L\left ( y,f_{t}\left ( x \right ) \right )=L\left ( y,f_{t-1}\left ( x \right ) +h_{t}\left ( x \right )\right ) L(y,ft(x))=L(y,ft1(x)+ht(x))最小。也就是说,本轮迭代的CART决策树要使得本轮损失最小。

3.3、负梯度拟合

如何计算本轮的损失是很困难的,Freidman提出了用损失函数的负梯度来拟合本轮损失的近似值,进而拟合一个CART回归树。
第t轮第i个样本的损失函数的负梯度表示为 γ t i = − [ ∂ L ( y i , f ( x i ) ) ∂ f ( x i ) ] \gamma _{ti}=-\left [ \frac{\partial L\left ( y_{i} ,f\left ( x_{i} \right )\right )}{\partial f\left ( x_{i} \right )} \right ] γti=[f(xi)L(yi,f(xi))]利用 ( x i , γ t i ) \left ( x_{i} ,\gamma _{ti}\right ) (xi,γti) ,来拟合第t颗CART回归树,其对应的叶节点区域 R t j R_{tj} Rtj。其中J为叶子节点的个数。
针对每一个叶子节点里的样本,我们求出使损失函数最小的 c t j c_{tj} ctj c t j = a r g m i n ⎵ c ∑ x i ⊆ R t j L ( y i , f t − 1 ( x i ) + c ) c_{tj}=\underset{c}{\underbrace{argmin}}\underset{x_{i}\subseteq R_{tj}}{\sum }L\left ( y_{i} ,f_{t-1}\left ( x_{i} \right )+c\right ) ctj=c argminxiRtjL(yi,ft1(xi)+c)即本轮的决策树拟合函数 h t ( x ) = ∑ j = 1 J c t j I ( x ∈ R t j ) h_{t}\left ( x \right )=\sum_{j=1}^{J}c_{tj}I\left ( x\in R_{tj} \right ) ht(x)=j=1JctjI(xRtj)从而本轮最终得到的强学习器的表达式 f t ( x ) = f t − 1 ( x ) + ∑ j = 1 J c t j I ( x ∈ R t j ) f_{t}\left ( x \right )=f_{t-1}\left ( x \right )+\sum_{j=1}^{J}c_{tj}I\left ( x\in R_{tj} \right ) ft(x)=ft1(x)+j=1JctjI(xRtj)通过损失函数的负梯度来拟合,我们找到了一种通用的拟合损失误差的办法,这样无轮是分类问题还是回归问题,我们通过其损失函数的负梯度的拟合,就可以用GBDT来解决我们的分类回归问题。

3.4、回归算法流程

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.5、分类算法

这里我们再看看GBDT分类算法,GBDT的分类算法从思想上和GBDT的回归算法没有区别,但是由于样本输出不是连续的值,而是离散的类别,导致我们无法直接从输出类别去拟合类别输出的误差。

为了解决这个问题,主要有两个方法,一个是用指数损失函数,此时GBDT退化为Adaboost算法。另一种方法是用类似于逻辑回归的对数似然损失函数的方法。也就是说,我们用的是类别的预测概率值和真实概率值的差来拟合损失。本文仅讨论用对数似然损失函数的GBDT分类。而对于对数似然损失函数,我们又有二元分类和多元分类的区别。

3.5.1、二元分类

在这里插入图片描述

3.5.2、多元分类

在这里插入图片描述

4、GBDT正则化

1、加入步长因子防止过拟合,取值范围在(0,1)
2、(不放回)子采样比例,取值范围(0,1],推荐0.5~0.8
3、弱学习器(CART回归树)进行正则化剪枝,参考决策树原理内容

优缺点

GBDT主要的优点有:

1) 可以灵活处理各种类型的数据,包括连续值和离散值。

2) 在相对少的调参时间情况下,预测的准确率也可以比较高。这个是相对SVM来说的。

3)使用一些健壮的损失函数,对异常值的鲁棒性非常强。比如 Huber损失函数和Quantile损失函数。

GBDT的主要缺点有:

1)由于弱学习器之间存在依赖关系,难以并行训练数据。不过可以通过自采样的SGBT来达到部分并行。

5、sklearn参数

在sacikit-learn中,GradientBoostingClassifier为GBDT的分类类, 而GradientBoostingRegressor为GBDT的回归类。两者的参数类型完全相同,当然有些参数比如损失函数loss的可选择项并不相同。我们把重要参数分为两类,第一类是Boosting框架的重要参数,第二类是弱学习器即CART回归树的重要参数。下面我们就从这两个方面来介绍这些参数的使用。

5.1、GBDT类库boosting框架参数

在这里插入图片描述

5.2、GBDT类库弱学习器参数

在这里插入图片描述

6、案例分析

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

GBDT调参实例

这里我们用一个二元分类的例子来讲解下GBDT的调参。这部分参考了这个Github上的数据调参过程Parameter_Tuning_GBM_with_Example。这个例子的数据有87000多行,完整代码参见github: https://github.com/ljpzzz/machinelearning/blob/master/ensemble-learning/gbdt_classifier.ipynb
这里有一篇讲解GBDT个人感觉比价好的传送门

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值