线段树的构造、查询和修改

线段树:

线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点。

Lintcode上关于线段树的三道题都采用了递归的思想,解发如下。

Lintcode(201)线段树的构造

Description:

线段树是一棵二叉树,他的每个节点包含了两个额外的属性startend用于表示该节点所代表的区间。startend都是整数,并按照如下的方式赋值:

•       根节点的 start end build方法所给出。

•       对于节点 A的左儿子,有start=A.left,end=(A.left + A.right) / 2

•       对于节点 A的右儿子,有start=(A.left +A.right) / 2 + 1, end=A.right

•       如果 start等于 end, 那么该节点是叶子节点,不再有左右儿子。

实现一个build方法,接受 start end 作为参数, 然后构造一个代表区间[start, end]的线段树,返回这棵线段树的根。

Explanation:

比如给定start=1,end=6,对应的线段树为:

               [1,  6]

             /        \

      [1, 3]           [4,  6]

      /    \           /     \

   [1, 2] [3,3]     [4, 5]   [6,6]

   /   \           /     \

[1,1]  [2,2]     [4,4]   [5,5]

 

Solution

/**
 * Definition of SegmentTreeNode:
 * public class SegmentTreeNode {
 *     public int start, end;
 *     public SegmentTreeNode left, right;
 *     public SegmentTreeNode(int start, int end) {
 *         this.start = start, this.end = end;
 *         this.left = this.right = null;
 *     }
 * }
 */
public class Solution {
    /**
     *@param start, end: Denote an segment / interval
     *@return: The root of Segment Tree
     */
    public SegmentTreeNode build(int start, int end) {
        // write your code here
        if(start > end) return null;
        
        SegmentTreeNode head = new SegmentTreeNode(start , end);
        
        if(start < end){
            head.left = build(start , (start + end) / 2);
            head.right = build((start + end) / 2 + 1 , end);
        };
        
        return head;
    }
}


Lintcode(202)线段树的查询

Description:

对于一个有n个数的整数数组,在对应的线段树中,根节点所代表的区间为0-n-1,每个节点有一个额外的属性max,值为该节点所代表的数组区间startend内的最大值。

SegmentTree设计一个query的方法,接受3个参数root,startend,线段树root所代表的数组中子区间[start, end]内的最大值。

Explanation:

对于数组[1, 4, 2, 3],对应的线段树为:

                  [0, 3, max=4]

                 /             \

          [0,1,max=4]        [2,3,max=3]

          /         \        /         \

   [0,0,max=1] [1,1,max=4] [2,2,max=2],[3,3,max=3]

query(root, 1, 1), return 4

query(root, 1, 2), return 4

query(root, 2, 3), return 3

query(root,0, 2), return 4

Solution

 

/**
 * Definition of SegmentTreeNode:
 * public class SegmentTreeNode {
 *     public int start, end, max;
 *     public SegmentTreeNode left, right;
 *     public SegmentTreeNode(int start, int end, int max) {
 *         this.start = start;
 *         this.end = end;
 *         this.max = max
 *         this.left = this.right = null;
 *     }
 * }
 */
public class Solution {
    /**
     *@param root, start, end: The root of segment tree and 
     *                         an segment / interval
     *@return: The maximum number in the interval [start, end]
     */
    public int query(SegmentTreeNode root, int start, int end) {
        // write your code here
        if(root == null) return 0;
        
        if(root.start >= start && root.end <= end){
            return root.max;
        }
        int mid = root.start + (root.end - root.start)/2;
        int leftValue = query(root.left , start , Math.min(mid , end));
        int rightValue = query(root.right , Math.max(mid , start) , end);
        return Math.max(leftValue , rightValue);
    }
}

Lintcode(203)线段树的修改

Description:

对于一棵最大线段树,每个节点包含一个额外的max属性,用于存储该节点所代表区间的最大值。

设计一个modify的方法,接受三个参数rootindexvalue。该方法将 root 为跟的线段树中 [start, end] = [index, index]的节点修改为了新的 value,并确保在修改后,线段树的每个节点的 max属性仍然具有正确的值。

Explanation:

对于线段树:

                      [1, 4, max=3]

                    /                \

        [1, 2, max=2]                [3, 4, max=3]

       /              \             /             \

[1,1, max=2], [2, 2, max=1], [3, 3, max=0], [4, 4, max=3]

如果调用modify(root, 2, 4),返回:

                      [1, 4, max=4]

                    /                \

        [1, 2, max=4]                [3, 4, max=3]

       /              \             /             \

[1,1, max=2], [2, 2, max=4], [3, 3, max=0], [4, 4, max=3]

调用modify(root, 4, 0),返回:

                      [1, 4, max=2]

                    /                \

        [1, 2, max=2]                [3, 4, max=0]

       /              \             /             \

[1, 1, max=2], [2, 2, max=1], [3, 3,max=0], [4, 4, max=0]

Solution

 

/**
 * Definition of SegmentTreeNode:
 * public class SegmentTreeNode {
 *     public int start, end, max;
 *     public SegmentTreeNode left, right;
 *     public SegmentTreeNode(int start, int end, int max) {
 *         this.start = start;
 *         this.end = end;
 *         this.max = max
 *         this.left = this.right = null;
 *     }
 * }
 */
public class Solution {
    /**
     *@param root, index, value: The root of segment tree and 
     *@ change the node's value with [index, index] to the new given value
     *@return: void
     */
    public void modify(SegmentTreeNode root, int index, int value) {
        // write your code here
        if(root.start == index && root.end == index){
            root.max = value;
            return;
        }
        
        int mid = root.start + (root.end - root.start)/2;
        if(index <= mid){
            modify(root.left , index , value);
        }else{
            modify(root.right , index , value);
        }
        
        root.max = Math.max(root.left.max , root.right.max);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值