初级实战机器学习(Python语言、算法、Numpy库、MatplotLib)-张勇-专题视频课程...

初级实战机器学习(Python语言、算法、Numpy库、MatplotLib)—727人已学习
课程介绍    

    本教程系统的介绍了机器学习的目的和方法。并且针对每一种常用的方法进行了详细的解析,用实例来说明具体的实现,学生可以跟着一步步完成。在面对现实的问题的时候,可以找到非常可靠的参照。本课程在开始讲解了Python语言的基础知识,以保证后面的课程中可以顺利进行。更多的Python语言的知识,需要学员自己去找更多的资料进行学习。
课程收益
    目标一. 了解机器学习的目标 目标二. 了解机器学习的常用方法 目标三. 通过实战,学习机器学习的实现 目标四. 学习机器学习开发中的一些常用工具
讲师介绍
    张勇 更多讲师课程
    北风网技术总监,在某大型电信设备公司担任架构师,主要从事电信领域的软件开发,经验丰富。对电信计费系统以及核心网软件系统有深入了解,对设计高可靠性,高扩展性的软件系统具有丰富经验。
课程大纲
  第1章:机器学习的任务和方法
    1. 机器学习的任务和方法01  16:14
    2. 机器学习的任务和方法02  25:09
    3. Python基础2-数据库访问03  22:29
  第2章:Python语言基础
    1. Python语言基础01  26:19
    2. Python语言基础02  20:00
    3. Python语言基础03  18:35
    4. Python语言基础04  19:29
    5. Python语言基础05  13:48
    6. Python语言基础06  32:04
    7. Python基础2-文件访问01  20:39
    8. Python基础2-文件访问02  18:34
    9. Python基础2-数据库访问04  23:54
    10. Python基础2-网络编程05  20:44
    11. Python基础2-网络编程06  18:42
    12. Python基础2-第三方库07  8:06
  第3章:分类算法介绍
    1. 分类算法介绍  19:14
  第4章:k-临近算法
    1. k-临近算法01  18:17
    2. k-临近算法02  19:10
    3. k-临近算法03  20:55
    4. k-临近算法04  15:44
    5. k-临近算法05  19:10
    6. k-临近算法06  20:09
    7. k-临近算法07  19:01
  第5章:决策树
    1. 决策树01  19:09
    2. 决策树02  21:24
    3. 决策树03  26:03
    4. 决策树04  22:54
    5. 决策树05  9:05
  第6章:基于概率论的分类方法:朴素贝叶斯
    1. 基于概率论的分类方法:朴素贝叶斯01  23:36
    2. 基于概率论的分类方法:朴素贝叶斯02  28:13
    3. 基于概率论的分类方法:朴素贝叶斯03  25:50
    4. 基于概率论的分类方法:朴素贝叶斯04  25:45
    5. 基于概率论的分类方法:朴素贝叶斯05  25:46
    6. 基于概率论的分类方法:朴素贝叶斯06  19:54
  第7章:Logistic回归
    1. Logistic回归01  16:23
    2. Logistic回归02  18:04
    3. Logistic回归03  24:42
    4. Logistic回归04  17:41
    5. Logistic回归05  30:10
    6. Logistic回归06  27:50
  第8章:支持向量机
    1. 支持向量机01  17:02
    2. 支持向量机02  17:15
    3. 支持向量机03  17:50
    4. 支持向量机04  26:52
    5. 支持向量机05  22:17
    6. 支持向量机06  22:50
    7. 支持向量机07  23:48
    8. 支持向量机08  20:20
  第9章:利用AdaBoost元算法提高分类性能
    1. 利用AdaBoost元算法提高分类性能01  11:40
    2. 利用AdaBoost元算法提高分类性能02  27:02
    3. 利用AdaBoost元算法提高分类性能03  28:03
    4. 利用AdaBoost元算法提高分类性能04  18:42
    5. 利用AdaBoost元算法提高分类性能05  24:07
  第10章:利用回归预测数值型数据
    1. 利用回归预测数值型数据01  25:56
    2. 利用回归预测数值型数据02  17:39
    3. 利用回归预测数值型数据03  22:35
    4. 利用回归预测数值型数据04  17:30
    5. 利用回归预测数值型数据05  13:44
  第11章:树回归
    1. 树回归01  17:45
    2. 树回归02  24:23
    3. 树回归03  14:18
  第12章:无监督学习
    1. 无监督学习  9:01
  第13章:利用K-均值聚类算法对未标注数据分组
    1. 利用K-均值聚类算法对未标注数据分组01  30:00
    2. 利用K-均值聚类算法对未标注数据分组02  14:12
  第14章:使用Apriori算法进行关联分析
    1. 使用Apriori算法进行关联分析01  16:09
    2. 使用Apriori算法进行关联分析02  22:09
    3. 使用Apriori算法进行关联分析03  21:11
  第15章:使用FP-growth算法来高效发现频分项集
    1. 使用FP-growth算法来高效发现频繁项集01  23:46
    2. 使用FP-growth算法来高效发现频繁项集02  22:40
    3. 使用FP-growth算法来高效发现频繁项集03  17:55
  第16章:利用PCA来简化数据
    1. 利用PCA来简化数据01  19:34
    2. 利用PCA来简化数据02  13:15
  第17章:利用SVD简化数据
    1. 利用SVD简化数据01  12:12
    2. 利用SVD简化数据02  23:42
    3. 利用SVD简化数据03  27:53
  第18章:大数据与MapReduce
    1. 大数据与MapReduce  26:57
  第19章:学习总结
    1. 学习总结  18:51
大家可以点击【 查看详情】查看我的课程
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值