初级实战机器学习(Python语言、算法、Numpy库、MatplotLib)—727人已学习
课程介绍
本教程系统的介绍了机器学习的目的和方法。并且针对每一种常用的方法进行了详细的解析,用实例来说明具体的实现,学生可以跟着一步步完成。在面对现实的问题的时候,可以找到非常可靠的参照。本课程在开始讲解了Python语言的基础知识,以保证后面的课程中可以顺利进行。更多的Python语言的知识,需要学员自己去找更多的资料进行学习。
课程收益
目标一. 了解机器学习的目标 目标二. 了解机器学习的常用方法 目标三. 通过实战,学习机器学习的实现 目标四. 学习机器学习开发中的一些常用工具
讲师介绍
张勇 更多讲师课程
北风网技术总监,在某大型电信设备公司担任架构师,主要从事电信领域的软件开发,经验丰富。对电信计费系统以及核心网软件系统有深入了解,对设计高可靠性,高扩展性的软件系统具有丰富经验。
课程大纲
第1章:机器学习的任务和方法
1. 机器学习的任务和方法01 16:14
2. 机器学习的任务和方法02 25:09
3. Python基础2-数据库访问03 22:29
第2章:Python语言基础
1. Python语言基础01 26:19
2. Python语言基础02 20:00
3. Python语言基础03 18:35
4. Python语言基础04 19:29
5. Python语言基础05 13:48
6. Python语言基础06 32:04
7. Python基础2-文件访问01 20:39
8. Python基础2-文件访问02 18:34
9. Python基础2-数据库访问04 23:54
10. Python基础2-网络编程05 20:44
11. Python基础2-网络编程06 18:42
12. Python基础2-第三方库07 8:06
第3章:分类算法介绍
1. 分类算法介绍 19:14
第4章:k-临近算法
1. k-临近算法01 18:17
2. k-临近算法02 19:10
3. k-临近算法03 20:55
4. k-临近算法04 15:44
5. k-临近算法05 19:10
6. k-临近算法06 20:09
7. k-临近算法07 19:01
第5章:决策树
1. 决策树01 19:09
2. 决策树02 21:24
3. 决策树03 26:03
4. 决策树04 22:54
5. 决策树05 9:05
第6章:基于概率论的分类方法:朴素贝叶斯
1. 基于概率论的分类方法:朴素贝叶斯01 23:36
2. 基于概率论的分类方法:朴素贝叶斯02 28:13
3. 基于概率论的分类方法:朴素贝叶斯03 25:50
4. 基于概率论的分类方法:朴素贝叶斯04 25:45
5. 基于概率论的分类方法:朴素贝叶斯05 25:46
6. 基于概率论的分类方法:朴素贝叶斯06 19:54
第7章:Logistic回归
1. Logistic回归01 16:23
2. Logistic回归02 18:04
3. Logistic回归03 24:42
4. Logistic回归04 17:41
5. Logistic回归05 30:10
6. Logistic回归06 27:50
第8章:支持向量机
1. 支持向量机01 17:02
2. 支持向量机02 17:15
3. 支持向量机03 17:50
4. 支持向量机04 26:52
5. 支持向量机05 22:17
6. 支持向量机06 22:50
7. 支持向量机07 23:48
8. 支持向量机08 20:20
第9章:利用AdaBoost元算法提高分类性能
1. 利用AdaBoost元算法提高分类性能01 11:40
2. 利用AdaBoost元算法提高分类性能02 27:02
3. 利用AdaBoost元算法提高分类性能03 28:03
4. 利用AdaBoost元算法提高分类性能04 18:42
5. 利用AdaBoost元算法提高分类性能05 24:07
第10章:利用回归预测数值型数据
1. 利用回归预测数值型数据01 25:56
2. 利用回归预测数值型数据02 17:39
3. 利用回归预测数值型数据03 22:35
4. 利用回归预测数值型数据04 17:30
5. 利用回归预测数值型数据05 13:44
第11章:树回归
1. 树回归01 17:45
2. 树回归02 24:23
3. 树回归03 14:18
第12章:无监督学习
1. 无监督学习 9:01
第13章:利用K-均值聚类算法对未标注数据分组
1. 利用K-均值聚类算法对未标注数据分组01 30:00
2. 利用K-均值聚类算法对未标注数据分组02 14:12
第14章:使用Apriori算法进行关联分析
1. 使用Apriori算法进行关联分析01 16:09
2. 使用Apriori算法进行关联分析02 22:09
3. 使用Apriori算法进行关联分析03 21:11
第15章:使用FP-growth算法来高效发现频分项集
1. 使用FP-growth算法来高效发现频繁项集01 23:46
2. 使用FP-growth算法来高效发现频繁项集02 22:40
3. 使用FP-growth算法来高效发现频繁项集03 17:55
第16章:利用PCA来简化数据
1. 利用PCA来简化数据01 19:34
2. 利用PCA来简化数据02 13:15
第17章:利用SVD简化数据
1. 利用SVD简化数据01 12:12
2. 利用SVD简化数据02 23:42
3. 利用SVD简化数据03 27:53
第18章:大数据与MapReduce
1. 大数据与MapReduce 26:57
第19章:学习总结
1. 学习总结 18:51
大家可以点击【 查看详情】查看我的课程
课程介绍
本教程系统的介绍了机器学习的目的和方法。并且针对每一种常用的方法进行了详细的解析,用实例来说明具体的实现,学生可以跟着一步步完成。在面对现实的问题的时候,可以找到非常可靠的参照。本课程在开始讲解了Python语言的基础知识,以保证后面的课程中可以顺利进行。更多的Python语言的知识,需要学员自己去找更多的资料进行学习。
课程收益
目标一. 了解机器学习的目标 目标二. 了解机器学习的常用方法 目标三. 通过实战,学习机器学习的实现 目标四. 学习机器学习开发中的一些常用工具
讲师介绍
张勇 更多讲师课程
北风网技术总监,在某大型电信设备公司担任架构师,主要从事电信领域的软件开发,经验丰富。对电信计费系统以及核心网软件系统有深入了解,对设计高可靠性,高扩展性的软件系统具有丰富经验。
课程大纲
第1章:机器学习的任务和方法
1. 机器学习的任务和方法01 16:14
2. 机器学习的任务和方法02 25:09
3. Python基础2-数据库访问03 22:29
第2章:Python语言基础
1. Python语言基础01 26:19
2. Python语言基础02 20:00
3. Python语言基础03 18:35
4. Python语言基础04 19:29
5. Python语言基础05 13:48
6. Python语言基础06 32:04
7. Python基础2-文件访问01 20:39
8. Python基础2-文件访问02 18:34
9. Python基础2-数据库访问04 23:54
10. Python基础2-网络编程05 20:44
11. Python基础2-网络编程06 18:42
12. Python基础2-第三方库07 8:06
第3章:分类算法介绍
1. 分类算法介绍 19:14
第4章:k-临近算法
1. k-临近算法01 18:17
2. k-临近算法02 19:10
3. k-临近算法03 20:55
4. k-临近算法04 15:44
5. k-临近算法05 19:10
6. k-临近算法06 20:09
7. k-临近算法07 19:01
第5章:决策树
1. 决策树01 19:09
2. 决策树02 21:24
3. 决策树03 26:03
4. 决策树04 22:54
5. 决策树05 9:05
第6章:基于概率论的分类方法:朴素贝叶斯
1. 基于概率论的分类方法:朴素贝叶斯01 23:36
2. 基于概率论的分类方法:朴素贝叶斯02 28:13
3. 基于概率论的分类方法:朴素贝叶斯03 25:50
4. 基于概率论的分类方法:朴素贝叶斯04 25:45
5. 基于概率论的分类方法:朴素贝叶斯05 25:46
6. 基于概率论的分类方法:朴素贝叶斯06 19:54
第7章:Logistic回归
1. Logistic回归01 16:23
2. Logistic回归02 18:04
3. Logistic回归03 24:42
4. Logistic回归04 17:41
5. Logistic回归05 30:10
6. Logistic回归06 27:50
第8章:支持向量机
1. 支持向量机01 17:02
2. 支持向量机02 17:15
3. 支持向量机03 17:50
4. 支持向量机04 26:52
5. 支持向量机05 22:17
6. 支持向量机06 22:50
7. 支持向量机07 23:48
8. 支持向量机08 20:20
第9章:利用AdaBoost元算法提高分类性能
1. 利用AdaBoost元算法提高分类性能01 11:40
2. 利用AdaBoost元算法提高分类性能02 27:02
3. 利用AdaBoost元算法提高分类性能03 28:03
4. 利用AdaBoost元算法提高分类性能04 18:42
5. 利用AdaBoost元算法提高分类性能05 24:07
第10章:利用回归预测数值型数据
1. 利用回归预测数值型数据01 25:56
2. 利用回归预测数值型数据02 17:39
3. 利用回归预测数值型数据03 22:35
4. 利用回归预测数值型数据04 17:30
5. 利用回归预测数值型数据05 13:44
第11章:树回归
1. 树回归01 17:45
2. 树回归02 24:23
3. 树回归03 14:18
第12章:无监督学习
1. 无监督学习 9:01
第13章:利用K-均值聚类算法对未标注数据分组
1. 利用K-均值聚类算法对未标注数据分组01 30:00
2. 利用K-均值聚类算法对未标注数据分组02 14:12
第14章:使用Apriori算法进行关联分析
1. 使用Apriori算法进行关联分析01 16:09
2. 使用Apriori算法进行关联分析02 22:09
3. 使用Apriori算法进行关联分析03 21:11
第15章:使用FP-growth算法来高效发现频分项集
1. 使用FP-growth算法来高效发现频繁项集01 23:46
2. 使用FP-growth算法来高效发现频繁项集02 22:40
3. 使用FP-growth算法来高效发现频繁项集03 17:55
第16章:利用PCA来简化数据
1. 利用PCA来简化数据01 19:34
2. 利用PCA来简化数据02 13:15
第17章:利用SVD简化数据
1. 利用SVD简化数据01 12:12
2. 利用SVD简化数据02 23:42
3. 利用SVD简化数据03 27:53
第18章:大数据与MapReduce
1. 大数据与MapReduce 26:57
第19章:学习总结
1. 学习总结 18:51
大家可以点击【 查看详情】查看我的课程