spark java api通过run as java application运行的方法

13 篇文章 0 订阅
这篇博客介绍了如何使用Java Spark Context的addJar方法,将Java应用打包为jar,并在Spark集群上运行,避免ClassNotFoundException。示例代码展示了如何提交jar包到Spark worker并执行,从而将Spark程序融入现有系统。
摘要由CSDN通过智能技术生成

先上代码:

/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements.  See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License.  You may obtain a copy of the License at
*
*    http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/


import java.util.Arrays;
import java.util.regex.Pattern;

import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;

import scala.Tuple2;

public final class JavaWordCount {
  private static final Pattern SPACE = Pattern.compile(" ");

  public static void main(String[] args) throws Exception {

    if (args.length < 2) {
      System.err.println("Usage: JavaWordCount <master> <file>");
      System.exit(1);
    }

    JavaSparkContext ctx = new JavaSparkContext(args[0], "JavaWordCount",
        System.getenv("SPARK_HOME"), JavaSparkContext.jarOfClass(JavaWordCount.class));
    ctx.addJar("/home/hadoop/Desktop/JavaSparkT.jar");
    JavaRDD<String> lines = ctx.textFile(args[1], 1);
    
    JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
      @Override
      public Iterable<String> call(String s) {
        return Arrays.asList(SPACE.split(s));
      }
    });
    
    JavaPairRDD<String, Integer> ones = words.map(new PairFunction<String, String, Integer>() {
      @Override
      public Tuple2<String, Integer> call(String s) {
        return new Tuple2<String, Integer>(s, 1);
      }
    });
    
    JavaPairRDD<String, Integer> counts = ones.reduceByKey(new Function2<Integer, Integer, Integer>() {
      @Override
      public Integer call(Integer i1, Integer i2) {
        return i1 + i2;
      }
    });
    counts.saveAsTextFile(args[2]); 
//    counts.s
    /*List<Tuple2<String, Integer>> output = counts.collect();
    for (Tuple2<?,?> tuple : output) {
      System.out.println(tuple._1() + ": " + tuple._2());
    }*/
    System.exit(0);
  }
}



这是spark 自带的一个example  之前只能将代码达成jar包然后在spark的bin目录下面通过spark-class来运行,这样我们就没办法将spark的程序你很好的融合到现有的系统中,所以我希望通过java函数调用的方式运行这段程序,在一段时间的摸索和老师的指导下发现根据报错的意思应该是没有将jar包提交到spark的worker上面 导致运行的worker找不到被调用的类,会报如下错误:

4/07/07 10:26:10 INFO TaskSetManager: Serialized task 1.0:0 as 2194 bytes in 104 ms

14/07/07 10:26:11 WARN TaskSetManager: Lost TID 0 (task 1.0:0)

14/07/07 10:26:11 WARN TaskSetManager: Loss was due to java.lang.ClassNotFoundException

java.lang.ClassNotFoundException: JavaWordCount$1

    at java.net.URLClassLoader$1.run(URLClassLoader.java:366)

    at java.net.URLClassLoader$1.run(URLClassLoader.java:355)

    at java.security.AccessController.doPrivileged(Native Method)

    at java.net.URLClassLoader.findClass(URLClassLoader.java:354)

    at java.lang.ClassLoader.loadClass(ClassLoader.java:425)

    at java.lang.ClassLoader.loadClass(ClassLoader.java:358)

    at java.lang.Class.forName0(Native Method)

    at java.lang.Class.forName(Class.java:270)

    at org.apache.spark.serializer.JavaDeserializationStream$anon$1.resolveClass(JavaSerializer.scala:37)

    at java.io.ObjectInputStream.readNonProxyDesc(ObjectInputStream.java:1612)

    at java.io.ObjectInputStream.readClassDesc(ObjectInputStream.java:1517)

    at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1771)

    at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)

    at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1990)

    at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915)

    at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)

    at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)

    at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1990)

    at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915)

    at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)

    at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)

    at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1990)

    at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1915)

    at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1798)

    at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1350)

    at java.io.ObjectInputStream.readObject(ObjectInputStream.java:370)

    at scala.collection.immutable.$colon$colon.readObject(List.scala:362)

    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)


解决方案:将要运行的程序达成jar包,然后调用JavaSparkContext的addJar方法将该jar包提交到spark集群中,然后spark的master会将该jar包分发到各个worker上面,
代码如下:

这样运行时就不会出现java.lang.ClassNotFoundException: JavaWordCount$1这样的错误了
运行如下:

spark://localhost:7077  hdfs://localhost:9000/input/test.txt  hdfs://localhost:9000/input/result.txt



然后会eclipse控制台中会有如下log

14/07/08 16:03:06 INFO Utils: Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
14/07/08 16:03:06 WARN Utils: Your hostname, localhost resolves to a loopback address: 127.0.0.1; using 192.168.200.233 instead (on interface eth0)
14/07/08 16:03:06 WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address
14/07/08 16:03:07 INFO Slf4jLogger: Slf4jLogger started
14/07/08 16:03:07 INFO Remoting: Starting remoting
14/07/08 16:03:07 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://spark@192.168.200.233:52469]
14/07/08 16:03:07 INFO Remoting: Remoting now listens on addresses: [akka.tcp://spark@192.168.200.233:52469]
14/07/08 16:03:07 INFO SparkEnv: Registering BlockManagerMaster
14/07/08 16:03:07 INFO DiskBlockManager: Created local directory at /tmp/spark-local-20140708160307-0a89
14/07/08 16:03:07 INFO MemoryStore: MemoryStore started with capacity 484.2 MB.
14/07/08 16:03:08 INFO ConnectionManager: Bound socket to port 47731 with id = ConnectionManagerId(192.168.200.233,47731)
14/07/08 16:03:08 INFO BlockManagerMaster: Trying to register BlockManager
14/07/08 16:03:08 INFO BlockManagerMasterActor$BlockManagerInfo: Registering block manager 192.168.200.233:47731 with 484.2 MB RAM
14/07/08 16:03:08 INFO BlockManagerMaster: Registered BlockManager
14/07/08 16:03:08 INFO HttpServer: Starting HTTP Server
14/07/08 16:03:08 INFO HttpBroadcast: Broadcast server started at http://192.168.200.233:58077
14/07/08 16:03:08 INFO SparkEnv: Registering MapOutputTracker
14/07/08 16:03:08 INFO HttpFileServer: HTTP File server directory is /tmp/spark-86439c44-9a36-4bda-b8c7-063c5c2e15b2
14/07/08 16:03:08 INFO HttpServer: Starting HTTP Server
14/07/08 16:03:08 INFO SparkUI: Started Spark Web UI at http://192.168.200.233:4040
14/07/08 16:03:08 INFO AppClient$ClientActor: Connecting to master spark://localhost:7077...
14/07/08 16:03:09 INFO SparkDeploySchedulerBackend: Connected to Spark cluster with app ID app-20140708160309-0000
14/07/08 16:03:09 INFO AppClient$ClientActor: Executor added: app-20140708160309-0000/0 on worker-20140708160246-localhost-34775 (localhost:34775) with 4 cores
14/07/08 16:03:09 INFO SparkDeploySchedulerBackend: Granted executor ID app-20140708160309-0000/0 on hostPort localhost:34775 with 4 cores, 512.0 MB RAM
14/07/08 16:03:09 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
14/07/08 16:03:09 INFO AppClient$ClientActor: Executor updated: app-20140708160309-0000/0 is now RUNNING
14/07/08 16:03:10 INFO SparkContext: Added JAR /home/hadoop/Desktop/JavaSparkT.jar at http://192.168.200.233:52827/jars/JavaSparkT.jar with timestamp 1404806590353
14/07/08 16:03:10 INFO MemoryStore: ensureFreeSpace(138763) called with curMem=0, maxMem=507720499
14/07/08 16:03:10 INFO MemoryStore: Block broadcast_0 stored as values to memory (estimated size 135.5 KB, free 484.1 MB)
14/07/08 16:03:12 INFO SparkDeploySchedulerBackend: Registered executor: Actor[akka.tcp://sparkExecutor@localhost:42090/user/Executor#-1434031133] with ID 0
14/07/08 16:03:13 INFO BlockManagerMasterActor$BlockManagerInfo: Registering block manager localhost:56831 with 294.9 MB RAM
14/07/08 16:03:13 INFO FileInputFormat: Total input paths to process : 1
14/07/08 16:03:13 INFO deprecation: mapred.job.id is deprecated. Instead, use mapreduce.job.id
14/07/08 16:03:13 INFO deprecation: mapred.tip.id is deprecated. Instead, use mapreduce.task.id
14/07/08 16:03:13 INFO deprecation: mapred.task.id is deprecated. Instead, use mapreduce.task.attempt.id
14/07/08 16:03:13 INFO deprecation: mapred.task.is.map is deprecated. Instead, use mapreduce.task.ismap
14/07/08 16:03:13 INFO deprecation: mapred.task.partition is deprecated. Instead, use mapreduce.task.partition
14/07/08 16:03:13 INFO SparkContext: Starting job: saveAsTextFile at JavaWordCount.java:66
14/07/08 16:03:13 INFO DAGScheduler: Registering RDD 4 (reduceByKey at JavaWordCount.java:60)
14/07/08 16:03:13 INFO DAGScheduler: Got job 0 (saveAsTextFile at JavaWordCount.java:66) with 1 output partitions (allowLocal=false)
14/07/08 16:03:13 INFO DAGScheduler: Final stage: Stage 0 (saveAsTextFile at JavaWordCount.java:66)
14/07/08 16:03:13 INFO DAGScheduler: Parents of final stage: List(Stage 1)
14/07/08 16:03:13 INFO DAGScheduler: Missing parents: List(Stage 1)
14/07/08 16:03:13 INFO DAGScheduler: Submitting Stage 1 (MapPartitionsRDD[4] at reduceByKey at JavaWordCount.java:60), which has no missing parents
14/07/08 16:03:13 INFO DAGScheduler: Submitting 1 missing tasks from Stage 1 (MapPartitionsRDD[4] at reduceByKey at JavaWordCount.java:60)
14/07/08 16:03:13 INFO TaskSchedulerImpl: Adding task set 1.0 with 1 tasks
14/07/08 16:03:13 INFO TaskSetManager: Starting task 1.0:0 as TID 0 on executor 0: localhost (PROCESS_LOCAL)
14/07/08 16:03:13 INFO TaskSetManager: Serialized task 1.0:0 as 2252 bytes in 39 ms
14/07/08 16:03:17 INFO TaskSetManager: Finished TID 0 in 3310 ms on localhost (progress: 1/1)
14/07/08 16:03:17 INFO DAGScheduler: Completed ShuffleMapTask(1, 0)
14/07/08 16:03:17 INFO DAGScheduler: Stage 1 (reduceByKey at JavaWordCount.java:60) finished in 3.319 s
14/07/08 16:03:17 INFO DAGScheduler: looking for newly runnable stages
14/07/08 16:03:17 INFO DAGScheduler: running: Set()
14/07/08 16:03:17 INFO DAGScheduler: waiting: Set(Stage 0)
14/07/08 16:03:17 INFO TaskSchedulerImpl: Removed TaskSet 1.0, whose tasks have all completed, from pool 
14/07/08 16:03:17 INFO DAGScheduler: failed: Set()
14/07/08 16:03:17 INFO DAGScheduler: Missing parents for Stage 0: List()
14/07/08 16:03:17 INFO DAGScheduler: Submitting Stage 0 (MappedRDD[7] at saveAsTextFile at JavaWordCount.java:66), which is now runnable
14/07/08 16:03:17 INFO DAGScheduler: Submitting 1 missing tasks from Stage 0 (MappedRDD[7] at saveAsTextFile at JavaWordCount.java:66)
14/07/08 16:03:17 INFO TaskSchedulerImpl: Adding task set 0.0 with 1 tasks
14/07/08 16:03:17 INFO TaskSetManager: Starting task 0.0:0 as TID 1 on executor 0: localhost (PROCESS_LOCAL)
14/07/08 16:03:17 INFO TaskSetManager: Serialized task 0.0:0 as 11717 bytes in 0 ms
14/07/08 16:03:17 INFO MapOutputTrackerMasterActor: Asked to send map output locations for shuffle 0 to spark@localhost:37990
14/07/08 16:03:17 INFO MapOutputTrackerMaster: Size of output statuses for shuffle 0 is 127 bytes
14/07/08 16:03:18 INFO DAGScheduler: Completed ResultTask(0, 0)
14/07/08 16:03:18 INFO TaskSetManager: Finished TID 1 in 1074 ms on localhost (progress: 1/1)
14/07/08 16:03:18 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool 
14/07/08 16:03:18 INFO DAGScheduler: Stage 0 (saveAsTextFile at JavaWordCount.java:66) finished in 1.076 s
14/07/08 16:03:18 INFO SparkContext: Job finished: saveAsTextFile at JavaWordCount.java:66, took 4.719158065 s




程序执行结果如下:

[hadoop@localhost sbin]$ hadoop fs -ls hdfs://localhost:9000/input/result.txt
14/07/08 16:04:22 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 2 items
-rw-r--r--   3 hadoop supergroup          0 2014-07-08 16:03 hdfs://localhost:9000/input/result.txt/_SUCCESS
-rw-r--r--   3 hadoop supergroup         56 2014-07-08 16:03 hdfs://localhost:9000/input/result.txt/part-00000
[hadoop@localhost sbin]$ hadoop fs -cat  hdfs://localhost:9000/input/result.txt/part-00000
14/07/08 16:04:44 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
(caozw,1)
(hello,3)
(hadoop,1)
(2.2.0,1)
(world,1)
[hadoop@localhost sbin]$ 


 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值