深度学习
sungod2
这个作者很懒,什么都没留下…
展开
-
VGG16学习笔记
VGG16学习笔记 论文:https://arxiv.org/abs/1409.1556 网络结构 VGG卷积神经网络是牛津大学在2014年提出来的模型。当这个模型被提出时,由于它的简洁性和实用性,马上成为了当时最流行的卷积神经网络模型。它在图像分类和目标检测任务中都表现出非常好的结果。在2014年的ILSVRC比赛中,VGG 在Top-5中取得了92.3%的正确率。 VGG中根据卷积核大小和卷积层数目的不同,可分为A,A-LRN, B, C, D, E共6个配置(ConvNet Configurati原创 2020-05-24 15:35:55 · 2068 阅读 · 0 评论 -
1×1卷积
1×1卷积 1、增加非线性 1×1卷积核的卷积过程相当于全连接层的计算过程,并且还加入了非线性激活函数,从而可以增加网络的非线性,使得网络可以表达更加复杂的特征。 2、特征降维 通过控制卷积核的数量达到通道数大小的放缩。特征降维带来的好是可以减少参数和计算量。 不引入1×1卷积的卷积操作: 引入1×1卷积的操作: 加入1×1卷积的Inception module: ...原创 2020-04-16 11:14:42 · 733 阅读 · 0 评论