题目看起来一点也不难
但是一这样想就肯定栽跟头
拿到题的第一个想法就是暴力,两个for循环,肯定会TLE
所以只能另想办法
把大问题转换成小问题
要用分治
还有二分
那么ans = solve ( l, mid ) + ( mid , r )
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn = 1e5 + 5;
int com[9], a[maxn];
ll solve(int l, int r) {
if (r - l == 1) return 0;
int mid = (l + r) >> 1;
ll ans = solve(l, mid) + solve(mid, r);//不包括r
sort(a + mid, a + r); //为lower_bound做准备
for (int i = l;i < mid;i++)
for (int j = 0;j < 9;j++)
if (com[j] - a[i] > 0)
ans += a + r - lower_bound(a + mid, a + r, com[j] - a[i]);
return ans;
}
int main() {
int n;cin >> n;
for (int i = 0;i < n;i++)
cin >> a[i];
com[0] = 10;
for (int i = 1;i < 10;i++)
com[i] = com[i - 1] * 10;
cout << solve(0, n) << endl;
return 0;
}
不知多长时间以后~
回顾的时候发现这道题当时基本上就是混过去的,基本没有印象,所以就只好重写了
其实这个题的基本思路就是用递归+分治+二分
先用com数组存10到1e9,然后再用lower_bound找找就行了
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn = 1e5 + 5;
typedef long long ll;
int a[maxn], com[9];
ll solve(int l, int r) {
if (l == r) return 0;
int mid = (l + r) >> 1;
ll ans = solve(l, mid) + solve(mid + 1, r);
sort(a + mid + 1, a + r + 1);
for (int i = l; i <= mid; i++)
for (int j = 0; j < 9; j++)
if (com[j] - a[i] > 0)
ans += a + r + 1 - lower_bound(a + mid + 1, a + r + 1, com[j] - a[i]);
return ans;
}
int main() {
int n; cin >> n;
for (int i = 1; i <= n; i++)
cin >> a[i];
com[0] = 10;
for (int i = 1; i < 9; i++)
com[i] = com[i - 1] * 10;
cout << solve(1, n) << endl;
return 0;
}