一文搞懂Text-CNN

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接: https://blog.csdn.net/shizhengxin123/article/details/79908915


1、何为textcnn

利用卷积神经网络对文本进行分类的算法,那如何用卷积神经网络对文本进行分类呢。这里就tensorflow版本的textcnn源码分析一波。要知道,对文本向量化之后一般是一个一维向量来代表这个文本,但是卷积神经网络一般是对图像进行处理的,那如何将一维转化成二维呢,textcnn在卷积层之前设置了一个embedding层,即将词向量嵌入进去。那具体如何操作的呢。

比如一句话(“白条”,“如何”,“开通”),假设给每个词一个id{“白条”:1,“如何”:2,“开通”:3},文本向量化之后则是【1,2,3】的一个一维向量,但是无法满足卷积层的输入,所以嵌入一个embedding层,此时假设每个词都有一个3维的词向量,{"白条":【2,3,4】,“如何”:【3,5,1】,“开通”:【4,5,6】},则通过embedding层的映射,原文本经过词向量嵌入之后变成【【2,3,4】,【3,5,1】,【4,5,6】】的二维向量,当然卷积神经网络对图像进行卷积时还有通道一说,这里对二维向量可以自动扩充一个维度以满足通道的这一个维度。


2、textcnn tensorflow 结构代码


    
    
  1. '''
  2. __author__ : 'shizhengxin'
  3. '''
  4. import tensorflow as tf
  5. import numpy as np
  6. class TextCNN(object):
  7. """
  8. A CNN for text classification.
  9. Uses an embedding layer, followed by a convolutional, max-pooling and softmax layer.
  10. """
  11. def __init__(
  12. self, sequence_length, num_classes, vocab_size ,embedding_matrix,
  13. embedding_size, filter_sizes, num_filters, l2_reg_lambda=0.0):
  14. # embedding_matrix,
  15. # Placeholders for input, output and dropout
  16. self.input_x = tf.placeholder(tf.int32, [ None, sequence_length], name= "input_x")
  17. self.input_y = tf.placeholder(tf.float32, [ None, num_classes], name= "input_y")
  18. self.dropout_keep_prob = tf.placeholder(tf.float32, name= "dropout_keep_prob")
  19. # Keeping track of l2 regularization loss (optional)
  20. l2_loss = tf.constant( 0.0)
  21. #Embedding layer
  22. # with tf.device('/cpu:0'), tf.name_scope("embedding"):
  23. # W = tf.Variable(
  24. # tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),
  25. # name="W")
  26. # self.embedded_chars = tf.nn.embedding_lookup(W, self.input_x)
  27. # self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)
  28. with tf.device( '/cpu:0'), tf.name_scope( "embedding"):
  29. self.embedded_chars = tf.nn.embedding_lookup(embedding_matrix, self.input_x)
  30. self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)
  31. self.embedded_chars_expanded = tf.cast(self.embedded_chars_expanded,dtype=tf.float32)
  32. print(self.embedded_chars_expanded.shape)
  33. # Create a convo
  34. #
  35. # lution + maxpool layer for each filter size
  36. pooled_outputs = []
  37. for i, filter_size in enumerate(filter_sizes):
  38. with tf.name_scope( "conv-maxpool-%s" % filter_size):
  39. # Convolution Layer
  40. filter_shape = [filter_size, embedding_size, 1, num_filters]
  41. W = tf.Variable(tf.truncated_normal(filter_shape, stddev= 0.1), name= "W")
  42. b = tf.Variable(tf.constant( 0.1, shape=[num_filters]), name= "b")
  43. conv = tf.nn.conv2d(
  44. self.embedded_chars_expanded,
  45. W,
  46. strides=[ 1, 1, 1, 1],
  47. padding= "VALID",
  48. name= "conv")
  49. # Apply nonlinearity
  50. h = tf.nn.relu(tf.nn.bias_add(conv, b), name= "relu")
  51. # Maxpooling over the outputs
  52. pooled = tf.nn.max_pool(
  53. h,
  54. ksize=[ 1, sequence_length - filter_size + 1, 1, 1],
  55. strides=[ 1, 1, 1, 1],
  56. padding= 'VALID',
  57. name= "pool")
  58. pooled_outputs.append(pooled)
  59. # Combine all the pooled features
  60. num_filters_total = num_filters * len(filter_sizes)
  61. self.h_pool = tf.concat(pooled_outputs, 3)
  62. self.h_pool_flat = tf.reshape(self.h_pool, [ -1, num_filters_total])
  63. # Add dropout
  64. with tf.name_scope( "dropout"):
  65. self.h_drop = tf.nn.dropout(self.h_pool_flat, self.dropout_keep_prob)
  66. # Final (unnormalized) scores and predictions
  67. with tf.name_scope( "output"):
  68. W = tf.get_variable(
  69. "W",
  70. shape=[num_filters_total, num_classes],
  71. initializer=tf.contrib.layers.xavier_initializer())
  72. b = tf.Variable(tf.constant( 0.1, shape=[num_classes]), name= "b")
  73. l2_loss += tf.nn.l2_loss(W)
  74. l2_loss += tf.nn.l2_loss(b)
  75. self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name= "scores")
  76. self.probability = tf.nn.sigmoid(self.scores)
  77. self.predictions = tf.argmax(self.scores, 1, name= "predictions")
  78. # CalculateMean cross-entropy loss
  79. with tf.name_scope( "loss"):
  80. losses = tf.nn.softmax_cross_entropy_with_logits(labels=self.input_y, logits=self.scores)
  81. self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss
  82. # Accuracy
  83. with tf.name_scope( "accuracy"):
  84. correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1))
  85. self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name= "accuracy")

可以看出textcnn的卷积方式是对输入层做三次不同卷积核的卷积,每次卷积后进行池化。

3、一张图让你搞懂textcnn

这是我画的一张textcnn结构图

1、首先输入层,将文本经过embedding之后形成了一个2000*300的维度,其中2000为文本最大长度、300为词向量的维度。

2、卷积层,卷积层设计三个不同大小的卷积核,【3*300,4*300,5*300】,每个不同大小的卷积核各128个。卷积后分别成为【1998*1*128,1997*1*128,1996*1*128】的feture-map,这里为什么会变成大小这样的,是因为tensorflow的卷积方式采用same 或者 valid的形式,这种卷积的方式采用的是valid 具体大家可以看看官方文档。

3、经过卷积之后,随后是三个池化层,池化层的目的是缩小特征图,这里同池化层的设置,将卷积层的特征池化之后的图为【1*1*128,1*1*128,1*1*28】,经过reshape维度合并成【3*128】。

4、全连接层就不必说,采用softmax就可以解决了。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值