对 Relu激活函数导致 [ 神经元死亡 ] 的理解
Relu激活函数导致 [ 神经元死亡 ] 的原因relu函数和sigmoid函数相比,虽然能够避免反向传播过程中的梯度消失、屏蔽负值、防止梯度饱和;但是relu也有自身的缺陷,当学习率过大时会出现某些神经元永久死亡的现象,导致网络后期无法正常更新原因分析:上式是神经网络权重更新的公式,其中η表示学习吕,Δw表示通过求导得到的当前参数的梯度(一般为正值)当学习率过大时,会导致ηΔw 这一项很大,当ηΔw 大于w时,更新后的w’就会变为负值;当权重参数变为负值时,输入网络的正值会和权..