深度学习
文章平均质量分 86
sunpro518
山东人
展开
-
卷积神经网络中的Separable Convolution
本文转载自尹国冰的博客卷积神经网络中的Separable Convolution卷积神经网络在图像处理中的地位已然毋庸置疑。卷积运算具备强大的特征提取能力、相比全连接又消耗更少的参数,应用在图像这样的二维结构数据中有着先天优势。然而受限于目前移动端设备硬件条件,显著降低神经网络的运算量依旧是网络结构优化的目标之一。本文所述的Separable Convolution就是降低卷积运算参数量的一种典型方法。常规卷积运算假设输入层为一个大小为64×64像素、三通道彩色图片。经过一个包含4个Filter的卷转载 2021-12-23 11:29:47 · 182 阅读 · 0 评论 -
pytorch矩阵乘法总结
文章目录点乘 `torch.mul(a,b)`二维矩阵乘 `torch.mm(a,b)`三维矩阵乘 `torch.bmm(`a,b)高维矩阵乘 `torch.matmul(a,b)`点乘 torch.mul(a,b)点乘是对应位置元素相乘点乘都是broadcast的,可以用torch.mul(a, b)实现,也可以直接用*实现。python中的广播机制(broadcasting)broadcasting可以这样理解:如果你有一个(m,n)的矩阵,让它加减乘除一个(1,n)的矩阵,它会被复制m次,原创 2021-12-13 11:22:33 · 6331 阅读 · 0 评论 -
nvidia-smi输出内容释义及使用
nvidia-smi(NVIDIA System Management Interface) 是基于nvml的gpu的系统管理接口,主要用于显卡的管理和状态监控。1.基础命令nvidia-smi安装完成后在命令行或终端输入命令nvidia-smi,即可看到下面的信息(点击放大):包含了显卡的信号、温度、风扇、功率、显存、使用率、计算模式等信息。2.实用命令#帮助nvidia-smi -h#持续监控gpu状态 (-lms 可实现毫秒级监控)nvidia-smi -l 3 #每三秒刷新一转载 2021-12-11 10:52:46 · 1961 阅读 · 0 评论 -
泛函、变分与欧拉-拉格朗日方程
文章目录泛函、变分与欧拉-拉格朗日方程1. 泛函2. 变分3. 欧拉-拉格朗日方程4. 两点之间直线最短的证明参考资料泛函、变分与欧拉-拉格朗日方程1. 泛函设CCC是一个由函数组成的集合,对于CCC中的任何一个元素y(x)y(x)y(x),数集BBB中都有一个元素FFF与之对应,称F是y(x)y(x)y(x)的泛函(functional),记作F=F[y(x)]F=F[y(x)]F=F[y(x)]。一般情况下,泛函式常用积分形式表示:J[y(x)]=∫x0x1F(x,y,y′)dxJ[y(x)]原创 2021-06-03 22:47:55 · 3165 阅读 · 0 评论 -
梯度下降法求解线性回归问题
关于梯度下降法, 网上的帖子很多。可能是大家觉得推导很简单,所以都忽略了。对于我这种弱智加强迫症的人来说,有时候忽略过去推导过程好难受,所以自己推了一下,的确不难,这里与大家共享一下。原创 2017-06-14 09:48:37 · 691 阅读 · 0 评论 -
MIT与谷歌专家合著论文:机器学习和神经科学的相互启发与融合
神经科学专注的点包括计算的细节实现,还有对神经编码、力学以及回路的研究。然而,在机器学习领域,人工神经网络则倾向于避免出现这些,而是往往使用简单和相对统一的初始结构,以支持成本函数(cost funcion)的蛮力最优化。近期出现了两项机器学习方面的进展,或许会将这两种看似不同的视角连接起来。第一,结构化的架构得以使用,这些架构包括注意力、递归,以及各种长、短期记忆储存专用系统。第二,随着时间以及层数的变化,成本函数转载 2017-06-25 18:35:46 · 1635 阅读 · 0 评论 -
新人上手TensorFlow之TensorFlow基本概念
TensorFlow是Google Brain的第二代机器学习系统,2015年11月9日,作为开源软件发布。TensorFlow的计算用有状态的数据流图表示。这个库的算法源于Google需要指导称为神经网络的计算机系统,类似人类学习和推理的方法,以便派生出新的应用程序承担以前仅人类能胜任的角色和职能原创 2017-06-29 19:52:52 · 1508 阅读 · 0 评论 -
新人上手TensorFlow 之 Normalization
上一篇转载自张俊林老师的博客,参考《batch normalization: accelerating deep network training by reducing internal》这篇论文,基本讲了一下,批处理归一化对于神经网络的意义所在及基本的原理和步骤。算是理论上的理解吧!这篇博客,我们来看一下,在TensorFlow中如何实现Normalization!原创 2017-07-01 15:13:57 · 2488 阅读 · 0 评论 -
新人上手TensorFlow 之 简单了解一下Batch Normalization (BN)
author: 张俊林 转载自:http://blog.csdn.net/malefactor/article/details/51476961Batch Normalization作为最近一年来DL的重要成果,已经广泛被证明其有效性和重要性。目前几乎已经成为DL的标配了,任何有志于学习DL的同学们朋友们雷迪斯俺的詹特曼们都应该好好学一学BN。BN倒过来看就是NB,因为这个技术确实很NB,转载 2017-07-01 11:03:52 · 4054 阅读 · 0 评论 -
新人上手TensorFlow 之前前后后
从一个小白,上手TensorFlow,过程还是挺复杂的。除了必要的步骤,其中还有许多小技巧,这里根据亲身经历,记录分享一下。原创 2017-06-28 11:33:40 · 746 阅读 · 0 评论 -
win7配置caffe的错误及解决方法
Windows7 caffe 配置的错误及解决原创 2016-10-17 00:58:16 · 515 阅读 · 0 评论 -
如何查看电脑的GPU型号
GPU 概念CUDA 概念如何查看win7电脑的GPUGPU的某种型号是否支持CUDA原创 2016-10-25 01:57:45 · 100315 阅读 · 2 评论