背包问题模板

模板

参考:知乎

要求恰好装满还是不要求恰好

我们看到的求最优解的背包问题题目中,事实上有两种不太相同的问法。有的题目 要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。一种区别 这两种问法的实现方法是在初始化的时候有所不同。
如果是第一种问法,要求恰好装满背包,那么在初始化时除了 F[0] 为 0,其它 F [1…V ] 均设为 −∞,这样就可以保证最终得到的 F [V ] 是一种恰好装满背包的最优解。
如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将 F [0…V ] 全部设为 0。
这是为什么呢?可以这样理解:初始化的 F 数组事实上就是在没有任何物品可以放 入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为 0 的背包可以在什 么也不装且价值为 0 的情况下被“恰好装满”,其它容量的背包均没有合法的解,属于 未定义的状态,应该被赋值为 -∞ 了。如果背包并非必须被装满,那么任何容量的背包 都有一个合法解“什么都不装”,这个解的价值为 0,所以初始时状态的值也就全部为 0 了。

  • dp[0]=0, dp[1:]为-1时,恰好装满
  • dp[0]=0, dp[1:]为0时,可能装不满
求最小包还是最大包
  • 最大包需要将dp后序除了dp[0]其他设为0或者-1。
  • 最小包需要将dp除了dp[0]其他设为无穷大。初始化时将临时数组dp赋值为最大值,并dp[0]=0,最后如果不能完全匹配,也就是dp[最大值]不变,便输出不可能。
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: C 01 背包问题是一种经典的动态规划问题。它的基本思想是:给定一个容量为 C 的背包和 N 个物品,每个物品都有自己的体积和价值,求在满足背包容量限制的前提下,能够装入背包中的物品的最大价值总和。 解决该问题的常用模板为: 1. 定义状态:定义 dp[i][j] 表示考虑前 i 个物品,容量为 j 的背包能够装入物品的最大价值总和。 2. 状态计算:根据背包的容量限制和物品的体积和价值,使用递推公式进行状态转移。 - dp[i][j] = max(dp[i-1][j], dp[i-1][j-v[i]] + w[i]) 其中,v[i] 和 w[i] 分别表示第 i 个物品的体积和价值。 3. 边界:考虑边界条件,dp[0][j]=0,dp[i][0]=0。 4. 计算结果:遍历整个 dp 数组,找到一个使得 dp[N][j] 最大的 j 值,即为答案。 ### 回答2: 01背包问题是指有一个背包,最多能装载一定重量的物品,现有一组物品,其重量和价值分别为wi和vi,求在背包容量限制下,如何选择物品,使得背包中物品的总价值最大化。 解决01背包问题的核心思想是动态规划。创建一个二维数组dp[n+1][W+1],其中n为物品的个数,W为背包的重量限制。dp[i][j]表示在前i个物品中选择,在背包容量为j时的最大总价值。 初始化dp数组的第一行和第一列为0,表示背包容量为0或没有物品可选时,总价值都为0。接下来,开始进行状态转移。 对于每一个物品i,可以选择将其放入背包中或不放入。如果将物品i放入背包中,则背包的容量会减少wi,总价值会增加vi。如果不放入物品i,则背包的容量和总价值都不变。因此,在计算dp[i][j]时,可以根据以下条件进行选择: - 如果j < wi,则无法将物品i放入背包中,此时dp[i][j] = dp[i-1][j]; - 如果j >= wi,则可以选择将物品i放入背包中,即dp[i][j] = max(dp[i-1][j], dp[i-1][j-wi] + vi)。 最终,dp[n][W]即为问题的解,表示在前n个物品中选择,在背包容量为W时的最大总价值。 通过动态规划算法,可以在时间复杂度为O(nW)的情况下解决01背包问题。这种算法适用于物品数量较小且背包容量较小的情况,效率较高。 ### 回答3: 01背包问题是一个经典的动态规划问题,用来求解在背包容量有限的情况下,如何选择物品放入背包使得总价值最大化。 问题可以描述为:给定n个物品,每个物品有一个重量和一个价值,以及一个容量为W的背包。要求在不超过背包容量的情况下,选取若干个物品放入背包,使得被选取的物品的总价值最大。 定义一个二维数组dp[n+1][W+1],其中dp[i][j]表示前i个物品中,背包容量为j时的最大总价值。 边界条件是dp[0][j] = 0,表示没有物品可选时,背包的总价值为0;和dp[i][0] = 0,表示背包容量为0时,无法选择任何物品,总价值也为0。 对于每一个物品i,有两种选择:放入背包或不放入背包。如果放入背包,则总价值为dp[i-1][j-w[i]] + v[i],其中w[i]是第i个物品的重量,v[i]是第i个物品的价值。如果不放入背包,则总价值为dp[i-1][j]。根据这两种选择,可以得到状态转移方程: dp[i][j] = max(dp[i-1][j-w[i]] + v[i], dp[i-1][j]) 最后,dp[n][W]即为问题的解,即前n个物品,在容量为W的背包中,所能达到的最大总价值。 综上所述,C 01背包问题模板的实现可以通过动态规划思想,并利用一个二维数组来保存状态值,最后输出dp[n][W]作为问题的解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值