- 博客(47)
- 收藏
- 关注
原创 DeepSeek-R1-0528重磅升级:三大突破重新定义AI生产力
DeepSeek-R1-0528发布,标志中国AI在深度推理、编程能力和行业适配三大领域跻身国际第一梯队。7天1亿用户增长奇迹及LiveCodeBench榜单亮眼表现,印证其技术价值与市场潜力。对开发者,R1-0528是构建智能应用的“超级外脑”;对普通用户是触手可及的“AI伙伴”。DeepSeek启动“千行百业AI进化计划”,R1-0528应用场景加速向医疗、教育、智能制造等领域渗透。深度推理驱动的AI生产力革命,或重新定义人机协作方式,开启智能时代新篇章。
2025-06-05 16:37:24
727
原创 Claude 4 震撼发布!AI 编程进入「开发者智能体」新纪元,7 小时重构代码库,安全与效率如何平衡?
Claude 4 的发布,成为了 AI 编程发展历程中的一座重要里程碑。它不再仅仅是辅助开发者的工具,而是以协作伙伴的新姿态登上舞台。我们正身处于这场变革之中,亲眼见证着软件开发范式的根本性转变。就像 Anthropic 的首席执行官 Dario Amodei 所说的那样,在未来,优秀的开发者并非是那些在写代码方面超越 AI 的人,而是那些最懂得如何与 AI 默契协作的人。
2025-05-28 14:43:02
821
原创 谷歌I/O 2025:AI重构操作系统与硬件生态,一场科技底层的范式革命
这场以“AI重塑底层架构”为主题的盛会,首次将人工智能技术深度嵌入操作系统内核、硬件交互逻辑及开发者生态体系,标志着科技行业正式进入“AI原生”时代:从Android 16的跨设备智能协同,到AR眼镜的厘米级空间感知,从端侧多模态模型到AI驱动的搜索范式颠覆。欢迎留言分享你的洞见!:苹果的封闭生态、Meta 的开源战略与谷歌的全栈布局形成三足鼎立,未来的竞争不再是单一产品的比拼,而是系统级生态、数据服务能力与开发者生态的综合较量。:AR眼镜的空间交互、全息通信的沉浸体验,正在瓦解触屏时代的人机交互逻辑。
2025-05-22 17:28:45
504
原创 国内外多模态大模型盘点:谁在引领AI新时代?
多模态大模型是指能够同时处理多种模态数据(如文本、图像、语音、视频等)的 AI 模型。看图说话(Image Captioning):根据图片生成描述性文字。文生图(Text-to-Image):根据文本生成高质量图像。视频理解(Video Understanding):分析视频内容并生成摘要。语音 + 文本交互(Speech-to-Text & Text-to-Speech):实现更自然的语音助手。多模态大模型的崛起,标志着 AI 从单一任务向通用人工智能(AGI)迈进的重要一步。
2025-05-21 15:49:40
742
原创 从 Qwen-3 发布看 AI 服务器选型新方向:硬件配置与成本优化策略
Qwen-3 的发布标志着 AI 服务器选型从「算力竞赛」转向「价值驱动」:性能优先:H100 / 昇腾 910B 仍是千亿参数训练的首选,但需配套液冷和异构计算。成本敏感:CPU 推理服务器 + 混合架构可满足 80% 的企业需求,初期投资降低 60%。长期布局:边缘计算、绿色算力和端侧智能是未来三大方向,企业需提前规划技术路线。建议结合 Qwen-3 的混合推理特性,优先选择经过市场验证的解决方案(如浪潮、华为、天翼云产品线),并关注政策动态(如绿色数据中心补贴)让我们的硬件及时更新换代。
2025-05-09 11:17:37
1178
原创 4.29阿里Qwen3重磅发布!五大核心突破,重新定义AI生产力
支持多步推理,通过“思维链”逐步拆解复杂问题。实测中,Qwen3-235B-A22B在解答“如何将2米长的甘蔗搬入1.5米宽的门”时,通过三维建模推导出“倾斜甘蔗使其对角线小于门宽”的方案,逻辑严谨性媲美人类专家。:包含2款MoE模型(30B/235B)和6款Dense模型(0.6B/1.7B/4B/8B/14B/32B),满足科研、移动端、企业级等多样化需求。:输入一段描述“星空下的城堡”的文字,模型可输出对应的图像生成提示词,并调用DALL·E等工具生成视觉内容,实现“文本-图像”闭环。
2025-05-07 11:38:15
666
原创 可灵AI 2.0上线:重新定义AI创作?好莱坞级特效触手可及
从早期电影的“火车进站”到可灵AI 2.0的“物理引擎级生成”,技术始终在拓展艺术表达的边界。今天,当一个普通用户能在3分钟内生成5秒好莱坞级特效,我们看到的不仅是工具的进步,更是人类创造力的解放。”当技术普惠的浪潮席卷而来,或许我们更该思考的不再是“AI能做什么”,而是“你想创造什么?大家怎么看?欢迎在评论区留言分享你的感受~
2025-04-29 11:08:32
610
原创 AI落地必备词:MLOps是什么?为何比开发模型更重要?
如果说深度学习框架(如PyTorch)解决了“如何训练好模型”的问题,那么MLOps解决的是“如何用好模型”的问题。在AI从“实验科学”走向“工程科学”的今天,模型精度是“下限”,MLOps能力才是“上限”。就像工业革命不是因为发明了蒸汽机,而是因为创造了流水线——MLOps,正是AI落地的“工业革命”。
2025-04-24 11:20:15
408
原创 vLLM等大模型推理框架深度对比:从技术到落地全解
随着Llama 3、DeepSeek R1等千亿参数模型的爆发式增长,如何将这些"巨无霸"高效部署到生产环境,成为AI落地的核心瓶颈。Ollama、vLLM、SGLang、TensorRT-LLM等推理框架的出现,正在重塑大模型的工程化范式。本文从技术架构、性能表现、适用场景三个维度,对主流框架进行深度拆解,并结合真实企业案例揭示选型逻辑。大模型推理框架的选择需综合考量技术适配性、业务场景需求、成本效益比技术适配性。
2025-04-23 15:51:43
653
原创 AI时代运维提效:3个人如何管理1000台服务器
对于企业而言,这不仅是成本的优化,更是业务竞争力的重构 —— 当运维效率提升 10 倍,创新迭代速度、用户体验、市场响应能力都将实现质的飞跃。:杭州一家游戏公司引入AI运维后,服务器规模从500台扩展至1200台,团队反而从15人缩减至5人,年运维成本从800万降至240万。传统运维依赖人工巡检,而AI通过分析日志、硬件指标(如GPU温度、内存占用)等数据,提前48小时预测故障概率。硬盘寿命预测:基于历史读写数据,AI判断硬盘剩余寿命,提前更换高危设备,降低数据丢失风险。,背后的秘密是什么?
2025-04-16 14:40:01
948
原创 2025,AI将如何改变我们的世界?这五大趋势抢先看
而到了2025年,AI将不再仅仅是“工具”,而是成为我们生活中不可或缺的“伙伴”。:德勤指出,重复性岗位加速消亡,人类转向战略决策、创意激发等机器难以替代的领域,企业通过“AI+人才”重组释放30%生产力。:微软研究显示,AI使办公效率提升30%以上,律师10分钟完成合同风险扫描,设计师用AR手势调整3D模型。:AI将新药研发周期从10年缩短至2-3年,2025年预计30%的新药由AI参与发现。:微软预测,到2025年,50%的白领工作将由AI自动完成,人类只需做最终决策。作为个体,我们该如何应对?
2025-04-10 14:14:25
1098
原创 3分钟搞懂AI大模型高频词:Token、RAG、RL…(附应用场景)
从Token的经济账到RAG的精准性,从量化的效率革命到智能体的自动化突破,这些术语背后折射出AI技术的演进逻辑。对于从业者而言,理解这些概念不仅是技术对话的入场券,更是设计产品、评估方案、洞察趋势的关键。:Token是AI处理文本的最小单位,相当于自然语言中的“字词片段”。:大模型“蒸馏”技术是把大语言模型中的能力和知识迁移到更小的模型的技术,目的是在于构造出来资源高效和性能优异的小模型,未经过蒸馏的模型好比是老师,经过蒸馏的小模型可以比作学生。量化程度越高,显存占用越少,但可能带来一定的精度损失。
2025-04-08 15:20:13
1319
原创 2025年度AI硬件白皮书:从入门到企业级的服务器选择逻辑
2025年,AI行业迎来爆发式增长,从大模型训练到AIGC应用,算力需求持续攀升。然而,不同规模的企业在硬件选择上往往面临巨大差异——创业团队追求性价比,中型企业需要稳定扩展,大厂则关注超大规模算力调度。:贵阳某AI绘画4人工作室使用单卡RTX 6000 Ada,3小时完成SDXL-LoRA训练,成本仅为云服务的1/5。无论是创业团队的精打细算,还是大厂的超大规模部署,合理的硬件配置都能让每一分算力投入产生最大价值。:广东某头部云厂商部署H100智算中心,支持千亿参数大模型训练,算力利用率提升40%。
2025-04-01 16:38:10
1291
原创 AI原生应用爆发:从通用大模型到垂直场景的算力重构
这些数据的背后,是AI技术从实验室走向产业深水区的必然结果,更是一场关于算力资源分配的革命——。在辅助诊断场景中,QwQ-32B需同时处理CT影像分析(需RTX 6000 Ada的48GB显存)、实时病理数据交叉验证(依赖服务器多卡互联技术)、医患对话生成(要求A100的FP8精度),这对异构算力调度提出极致要求。当DeepSeek-R1用1814块GPU撬动2500万用户,当通义千问在手术室里与医生并肩作战,当AI模特成为电商基础设施——这些场景都在诉说一个真理:。
2025-03-31 15:58:38
989
原创 从芯片到云端:国产算力企业的破局之路
在“东数西算”工程推动下,八大枢纽、十大集群的算力网络初具规模,国产化率要求从30%逐步提升至80%。从芯片研发的“卡脖子”突围,到云服务生态的全球竞争,国产算力企业正以“硬件突破+软件协同+场景深耕”的三维战略,重塑全球算力格局。尽管前路仍有挑战,但在政策红利、市场需求与技术创新的共振下,中国算力产业的星辰大海,已然可期。“国家队+民企”联合体(如中科院系、华为系)主导标准制定,运营商牵头成立“国产算力产业联盟”,推动跨厂商兼容测试。:中国算力网(C2NET)实现跨区域资源调度,利用率提升40%。
2025-03-27 14:12:29
1173
原创 DeepSeek 崛起:国产大模型格局重构与一体机的破局之道
在“东数西算”工程推动下,八大枢纽、十大集群的算力网络初具规模,国产化率要求从30%逐步提升至80%。从芯片研发的“卡脖子”突围,到云服务生态的全球竞争,国产算力企业正以“硬件突破+软件协同+场景深耕”的三维战略,重塑全球算力格局。尽管前路仍有挑战,但在政策红利、市场需求与技术创新的共振下,中国算力产业的星辰大海,已然可期。“国家队+民企”联合体(如中科院系、华为系)主导标准制定,运营商牵头成立“国产算力产业联盟”,推动跨厂商兼容测试。:曦智科技、光本位科技实现光计算芯片流片,算力密度提升10倍。
2025-03-20 16:40:12
1228
原创 烧了300万才明白:大模型训练翻车,99%的坑都藏在这两个数字里
凌晨3点的机房里,李鸣盯着屏幕上刺眼的红色报错提示,手心全是冷汗——他的团队耗时两个月训练的金融大模型,在第17天突然崩了。当李鸣的团队在80G显存的服务器上加载130B参数的模型时,还没意识到问题所在。——他们的服务器使用PCIe 4.0互联,实际传输带宽仅64GB/s,而采用NVLink3.0的机器带宽高达600GB/s。「我们以为买了最好的显卡,却栽在最基础的连接器上。某自动驾驶公司升级到NVLink4.0架构后,175B模型训练时间从27天压缩到11天,GPU闲置率从68%降至9%。
2025-03-19 10:59:38
594
原创 中小企业逆袭!解锁大厂级AI能力的秘密武器
在高并发的 AI 应用场景中,负载均衡技术的效果尤为显著。以 Linux 系统为例,调整 TCP 连接参数(如 tcp_tw_reuse、tcp_tw_recycle 等),可改善 TCP 连接延迟和吞吐量,在多 AI 任务数据传输时,能减少延迟,提升 AI 系统效率,如多用户 AI 图像生成应用中,优化后用户生成图像等待时间平均缩短 10 - 15 秒。大厂级 AI 能力并非遥不可及,只要积极行动起来,探索适合自己的方案,中小企业就能在 AI 的助力下,实现业务的创新与突破,在激烈的市场竞争中脱颖而出。
2025-03-18 14:24:34
901
原创 Manus会成为下一个DeepSeek吗?深度解析AI新星的崛起与挑战
Manus未必是“下一个DeepSeek”,但它标志着AI技术从认知智能迈向行动智能的关键一步。正如海尔周云杰所言:“所有行业都将被AI重塑”,DeepSeek与Manus的并存,恰恰证明了中国AI生态的多样性。从简历筛选到旅行规划,从股票分析到PPT制作,Manus以通用型AI Agent的定位,试图重新定义人机协作的边界。,通过降低算力成本(仅为传统架构的十分之一),推动AI技术的普惠化。,通过云端“虚拟机”模式,将复杂指令拆解为具体操作步骤,并自主完成文件处理、数据分析等实际工作。
2025-03-10 17:37:15
872
原创 服务器与显卡如何赋能高潜力赛道?五大场景硬件选型指南
这意味着,硬件选型已不仅是技术问题,更是战略决策——选对算力方案的企业,将率先吃到AI+X的万亿级红利。五大场景脱颖而出,成为AI+X行业渗透率破局的核心赛道。然而,这些场景对算力的需求差异显著——有人需要“短跑爆发力”,有人需要“马拉松耐力”。如何为不同赛道匹配最优硬件方案?无论是“轻量级”创意生成,还是“重负载”工业仿真,硬件配置的颗粒度决定了AI落地的成败。在算力为王的时代,你的显卡与服务器,就是推动行业破局的“隐形发动机”。2025年,AI技术已从“尝鲜期”迈入“深水区”。据阿里CEO吴泳铭透露,
2025-02-27 14:55:54
983
原创 中小企业AI算力平台搭建指南:显卡租赁VS自建服务器,谁才是性价比之王?
据行业统计,2024年全球AI算力需求同比增长超200%,但超60%的中小企业因硬件成本过高而延迟AI项目落地。本文将结合真实成本测算与场景分析,为你拆解显卡租赁与自建服务器的优劣,找到最适合企业的解决方案。若企业算力需求>18个月,自建总成本通常低于租赁(参考公式:租赁月费×使用时长 > 硬件采购价+5年运维费用)。显卡租赁是中小企业拥抱AI的“敲门砖”,而自建服务器则是规模化发展的“定心丸”。:你的企业当前处于哪个阶段?评论区留言“租赁”或“自建”,免费领取《AI算力成本测算工具包》!
2025-02-26 11:28:09
1590
原创 想要本地化部署deepseek671b?先看看你的服务器够不够“硬”最近国产大模型DeepSeek-671B火出圈了!
传统模型部署中参数常以 32-bit 或 16-bit 等高精度存储,需较大显存空间,而 4-bit/8-bit 量化技术可降低存储精度,让模型能在显存较小硬件上运行,4-bit 量化技术或使 DeepSeek 671B 模型显存占用降低数倍,实现显存有限硬件上的部署。NVIDIA A100 和 H100 显卡采用了先进的架构和技术,拥有强大的计算核心和高带宽显存,能够快速地处理大规模的数据,为 DeepSeek 671B 的运行提供强大的计算支持。显卡性能的优劣直接影响着模型的训练和推理速度。
2025-02-25 16:11:05
1718
原创 DeepSeek掀起推理服务器新风暴,AI应用迎来变革转折点?
从算法优化的角度来看,DeepSeek 采用了先进的算法,如多 token 预测策略,使得模型的推理速度从前代的 20 TPS(每秒生成 20 个 token)提升至 60 TPS,达到了 3 倍的提升。随着 AI 技术的飞速发展,越来越多的企业开始意识到,将 AI 应用于业务流程中,不仅能够提升效率,降低成本,还能增强企业的竞争力,开拓新的市场空间。某银行在采用推理型服务器后,风险评估的准确率提高了 30%,欺诈检测的效率提升了 50%,有效降低了金融风险,保障了客户的资金安全。
2025-02-19 15:48:03
1187
原创 AI服务器散热黑科技:让芯片“冷静”提速
该图是我们自主研发的服务器,就采用了液冷技术,搭载了英伟达4090 24G 显卡和一颗英特尔至强 8352V CPU,以及定制的全塔式液冷机箱,能耗上,传统风冷散热的数据中心冷却系统电力能耗占比达 40%,采用这款液冷服务器的数据中心冷却系统能耗大幅降低,价格也不贵,实现了绿色节能。然而,喷淋式液冷也面临着一些挑战。风冷散热能耗也高,风扇高速运转耗电,传统风冷散热数据中心中,冷却系统电力能耗占比达 40%,仅次于 IT 设备能耗,且风机转速超 4000 转时,转速增加对散热改善不明显,还会增能耗和噪音。
2025-02-18 16:38:32
1234
原创 无需配置!深脑云一键启用DeepSeek全系AI模型
在处理复杂的知识推理问题,如法律条文的解读、医学案例的分析时,也能展现出较强的能力。还是经验丰富的开发者,追求更强大的算力和更先进的模型,我们的深脑云云算力平台和 DeepSeek R1 镜像都能满足你的需求。我们的平台精心整合了 DeepSeek 的全系列版本镜像,无论您是追求高精度语言处理的开发者,还是探索前沿 AI 应用的科研人员,都能在这里找到最适合您需求的工具。根据您的需求,选择相应的版本,如 1.5B、7B、8B、14B、32B、70B、671B 等。注册成功后,登录您的账号,进入平台的首页。
2025-02-17 16:50:36
618
原创 DeepSeek模型“显卡适配指南”:一文读懂各参量需求
32B - 70B 参数量的模型,已经属于大型模型的范畴,对硬件的要求也随之大幅提升,其中32B的模型需要一张4090,而70B模型则需要2张4090。让我们一起深入探究一下。对于小企业而言,可以考虑部署deepseek70b的版本,成本大概在7-10w左右,而70b以下的本地部署意义不大,还不如直接到官网访问网络版本的,针对中大型企业则是可以考虑部署671b版本的,成本估计在100w,也能承受,我相信部署deepseek671b版本所带来的效率提升,足以在一年以内收回成本。输入:"描述中国历史"
2025-02-12 15:40:54
7755
2
原创 DeepSeek横空出世,算力产业“变天”了!
打个比方,传统的注意力机制就像是一个不懂得精简的搬运工,每次搬运都带着大量不必要的 “行李”,而 MLA 则像是一个精明的搬运工,只携带真正需要的东西,大大提高了效率。前几天我们的客户找我们定制了一台双卡4090服务器,用于搭建企业自身的知识库,总共9W左右的成本,就能流畅的运行deepseek-70b本地版本,生成速度达到了18token每秒,给企业的整体效率也高了15%,而且隐私性和安全性相比去调deepseek的官方接口也好了很多。在过去,高昂的算力成本是制约 AI 应用开发和推广的重要因素之一。
2025-02-11 16:52:15
738
原创 深脑云租用双卡4080s一键运行deeseek教程
它训练成本低,却有着强大的跨领域能力,在数学、编程、语言理解等多个领域表现出色,如 DeepSeek-V3 在编程任务通过率达 40%。DeepSeek70B在文本生成、问答系统、翻译等任务中表现出了极高的水准,展现了其在多个实际应用场景中的巨大潜力。输入:"描述中国历史"从输出中可以看出,DeepSeek70B不仅按时间顺序准确回答了问题,还提供了额外的背景信息,非常地有层次感,展现了其强大的知识储备和逻辑推理能力。翻译结果准确且流畅,DeepSeek70B在语言转换任务中表现出了极高的水准。
2025-02-10 10:55:30
2052
原创 单双卡4090挑战DeepSeek70B:本地部署效果揭秘
然而因为访问人数过多,deepseek的服务器有时候相应不过来,因此把它部署到本地,以便获得更好的体验,作为一名ai爱好者,我最近尝试在单卡和双卡NVIDIA RTX 4090上本地部署了DeepSeek70B,并对其效果进行了实测。这个速度很一般,基本不能使用,生成一篇300字的短文,大概要1分多钟,远远赶不上官方生成的速度。:版本为≥2.0,这是一个基于 Python 的科学计算包,广泛应用于深度学习领域,提供了丰富的工具和库,方便我们进行模型的搭建、训练和部署。在推理速度方面,通过。
2025-02-07 10:49:08
13188
11
原创 深度解析DeepSeek:国产AI黑马如何挑战ChatGPT-4?
在处理一篇新闻稿件时,底层专家可以快速提取出时间、地点、人物等基础信息,高层专家则能对稿件的主题、情感倾向进行深度分析,这种协同作战的方式,既提升了模型的性能,又降低了不必要的计算开销。在未来的 AI 发展中,成本与创新将如同鸟之双翼、车之两轮,缺一不可。DeepSeek 构建了智能数据调度系统,引入动态课程学习框架,根据模型当前能力自动调整数据难度分布,就像为学生量身定制学习计划一样,让模型在最合适的难度下学习,相比固定课程训练,收敛速度加快了 2.3 倍 ,大大缩短了训练时间,降低了时间成本。
2025-02-05 16:08:49
1380
原创 一文读懂高带宽内存家族:HBM、HBM2、HBM3
在 NVIDIA 的 A100 GPU 中,HBM2 的运用使得它在处理大规模数据和复杂计算任务时,能够快速地从显存中读取和写入数据,大大提高了计算效率,为深度学习、科学计算等领域的应用提供了强有力的支持。可以说,HBM2 的出现,为 GPU 和高性能计算领域的发展注入了强大的动力,推动了这些领域不断迈向新的高度。带宽上,HBM3e 大幅提升,部分产品带宽能突破每秒 1.2TB,相比 HBM3,如同在十六条车道的高速公路上新增应急车道,拓宽数据传输通道,保障大规模数据快速处理。
2025-01-22 16:09:21
4114
原创 Keras、TensorFlow、PyTorch框架对比及服务器配置揭秘
GPU 决定模型训练速度。随后,几行代码完成模型的编译和训练,短时间内就能得到一个初步的图像分类模型。这一过程,能让新手快速验证自己的想法,感受深度学习的魅力,非常适合用于快速搭建原型,进行思路验证。例如,在机器翻译任务中,研究人员可以利用 PyTorch 轻松构建基于 Transformer 架构的模型,通过动态计算图快速调整模型结构和参数,进行创新的研究实验。动态计算图就像是一个实时的 “操作指南”,能让你在调试模型时,清晰直观地看到模型的运行过程,仿佛拥有了一双透视眼,能够洞察模型内部的每一个细节。
2025-01-22 10:57:45
1469
2
原创 算力平台免费送算力
我们的服务特别适合需要高性能计算资源的研究人员、开发者和企业用户,能够满足机器学习、深度学习、科学计算等多种场景的需求。当用户租用算力后,平台会自动分配独立的Pod环境,用户可以通过公网IP和映射端口的方式便捷地访问和管理自己的计算环境。为了提升用户体验,平台支持环境持久化功能,用户可以将配置好的环境打包为镜像,在后续使用其他算力资源时快速复用,大大减少环境配置的时间成本。我们配备了专业的开发、运维和运营团队,为用户提供全方位的技术支持,确保服务的稳定性和可靠性。
2025-01-21 09:44:34
1084
原创 炼丹必备:GPU如何让深度学习“狂飙”,哪款更适合你?
这些核心能够同时处理众多的线程,实现大规模的并行计算。在深度学习中,许多计算任务,如矩阵乘法、卷积运算等,都可以分解为多个独立的子任务,这些子任务可以在 GPU 的多个核心上同时进行处理。CPU 的设计初衷主要是为了处理复杂的逻辑控制和通用计算任务,其核心数量相对较少,虽然每个核心的性能强大,但擅长的是串行计算,即在同一时间只能处理一个或少数几个任务。例如,在处理一幅高清图像时,GPU 可以将图像划分为多个小块,每个核心负责处理一个小块的图像数据,通过这种方式,GPU 能够在短时间内完成对整幅图像的处理。
2025-01-16 11:24:34
1188
原创 高效:一文带你读懂50系显卡的全部秘密
它的性能在中高端显卡里十分能打,在 1440p 分辨率下,能轻松应对各种大型游戏,让你享受流畅的游戏画面。对于预算有限,但又想体验中高端显卡性能的玩家来说,RTX 5070Ti 是个不错的选择。它在核心规格参数上,和 RTX 5090 保持一致,同样拥有 21760 个 CUDA 核心,2.01GHz 的基础频率和 2.41GHz 的加速频率,32GB GDDR7 显存。从性价比方面来说,虽然 RTX 5090D 的 AI 性能有所阉割,可如果你的需求主要集中在游戏和常规创作,那它还是很值得考虑的。
2025-01-15 10:58:58
2427
原创 大模型“华山论剑”:GPT-4o、Gemini、DeepSeek、Llama3、豆包谁最厉害?
跟传统模型不一样,它不用把不同类型的信息,像文本、图像、音频、视频还有代码,先分开处理,再拼到一块儿,而是从最开始就进行原生多模态预训练,能像咱们人一样,自然而然、顺顺溜溜地同时搞懂这些信息。它的运行速度直接翻倍,价格却降低了 50%,速率限制更是提高了 5 倍之多,这意味着在单位时间内,它能处理更多的任务,为用户节省大量成本。GPT-4o 更是站在巨人的肩膀上,突破单一模态局限,开启多模态融合的新篇章,让智能交互更加贴近人类的自然交流方式,为各行各业注入强大动力,持续引领着人工智能迈向新的高峰。
2025-01-14 14:45:13
15317
原创 硬盘入门指南:从基础认知到RAID 0-5全解析
好比有一个超大的文件,RAID 0 会将其拆分成多个小部分,分别写入不同硬盘,当需要读取这个文件时,多个硬盘又能同时发力,并行传输数据,就如同多条高速公路同时通车,大大提升了数据的传输速度。因为每次写入数据,不仅要写入数据盘,还得同步更新校验盘的校验信息,这使得校验盘的写入负载极高,一旦遇到大量写入操作的场景,校验盘就可能不堪重负,拖累整个系统的速度。购买两块同样容量的硬盘,却只能当作一块来用,从存储成本的角度看,确实有些 “奢侈”,但为了数据的万无一失,在很多关键场景下,这点成本又显得微不足道。
2025-01-14 14:42:37
1041
原创 英伟达 5090 系列显卡深度剖析:ai党和玩家有福了
它们不仅在散热上做到极致,能为超频提供坚实保障,外观设计也独具特色,信仰灯效加持下电竞氛围感拉满,适合发烧级游戏玩家组建顶级电竞主机,或是专业的图形工作室用于超复杂的渲染项目,价格虽高,但性能与品质绝对匹配。以《赛博朋克 2077》为例,在 4K 分辨率、全光追以及最高画质设置下,RTX 4090 平均帧率或许只能维持在 60 - 80 帧左右,而 RTX 5090 则能够轻松突破 120 帧,甚至在一些场景下接近 200 帧,游戏画面流畅度得到了质的提升,夜之城的霓虹闪烁、车水马龙从未如此顺滑。
2025-01-10 09:41:30
1837
原创 10W预算搭建深度学习服务器,看这一篇就够了!
机箱选联力包豪斯 O11D,内部空间宽敞,布局合理,方便硬件安装、拆卸与散热风道搭建,确保机箱内部空气流通,辅助硬件散热。当下,英伟达的 GeForce RTX 4090 无疑是热门之选,基于 Ada Lovelace 架构,拥有 16384 个 CUDA 核心,24GB GDDR6X 显存,显存位宽 384bit,显存频率高达 21000 MHz,单精度浮点性能超强,无论是图像识别、目标检测,还是复杂的自然语言处理任务,都能展现出卓越的计算效率,大幅缩短训练时间。依据监测数据,定期维护硬件必不可少。
2025-01-10 09:39:17
1523
原创 深度学习“神卡”大揭秘:4090、V100、L40、A100、H100 横评
一、引言在深度学习这片充满无限可能的领域里,显卡可是扮演着举足轻重的角色,堪称 AI 模型成长的 “超级摇篮”。从最初简单的神经网络到如今动辄上亿参数的巨型模型,每一次突破的背后,都离不开显卡强大算力的默默支撑。毫不夸张地说,显卡的迭代更新,直接推动着深度学习向前飞速发展。今天,就来给大家深度剖析几款深度学习领域的主流显卡 ——4090、V100、L40、A100、H100,看看它们究竟有何 “超能力”,能在激烈的竞争中脱颖而出。二、英伟达 RTX 4090:消费级的性能王者(一
2025-01-09 10:40:34
21057
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人