题目大意:
给定一棵树,然后每次修改是对u -> v路径上的点,增加一个新的权值,然后查询每个节点的权值数量最多的权值,如果有相同最大的,取权值小的。
思路
为啥说这是道万人皆知的题目呢?因为这是一个十足的套路,如果简化模型,把树换成一个segment,那么对一个区间[L, R]增加一个权值X,那可以用差分打标记的策略,先在L处打一个X的标记,可以用vector存一下,然后在R + 1存一个-X的标记,分别代表区间开始与结束,最后,遍历每个点,同时维护一棵权值线段树,代表每个权值的个数,最后查询最大值即可所在权值即可,可以在update的时候同时更新这个权值,然后直接查根的这个值就行。
同时这道题我又学到一个新的东西,是fp这个数组,之前用树剖从来没用过这个,这次用了一下发现还挺好用。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <iostream>
using namespace std;
typedef long long ll;
const int maxn = 1e5 + 100;
int n, m;
struct Edge {
int to, nxt;
}edge[maxn << 1];
int head[maxn], tot;
vector<int> up[maxn];
int deep[maxn], fa[maxn], sz[maxn], son[maxn];
int pos, top[maxn], p[maxn], fp[maxn];
void init() {
tot = 0; memset(head, -1, sizeof(head));
pos = 1; memset(son, -1, sizeof(son));
for(int i = 1; i <= n; i++) up[i].clear();
}
void addedge(int u, int v) {
edge[tot].to = v; edge[tot].nxt = head[u]; head[u] = tot++;
}
void dfs1(int u, int pre, int d) {
deep[u] = d;
fa[u] = pre;
sz[u] = 1;
for(int i = head[u]; i != -1; i = edge[i].nxt) {
int v = edge[i].to;
if(v != pre) {
dfs1(v, u, d + 1);
sz[u] += sz[v];
if(son[u] == -1 || sz[v] > sz[son[u]]) {
son[u] = v;
}
}
}
}
void dfs2(int u, int sp) {
top[u] = sp;
p[u] = pos++;
fp[p[u]] = u;
if(son[u] == -1) return ;
dfs2(son[u], sp);
for(int i = head[u]; i != -1; i = edge[i].nxt) {
int v = edge[i].to;
if(v != son[u] && v != fa[u]) {
dfs2(v,v);
}
}
}
void Change(int u, int v, int c) {
int f1 = top[u], f2 = top[v];
while(f1 != f2) {
if(deep[f1] < deep[f2]) {
swap(f1,f2);
swap(u,v);
}
up[p[f1]].push_back(c);
up[p[u] + 1].push_back(-c);
u = fa[f1];
f1 = top[u];
}
if(deep[u] > deep[v]) swap(u,v);
up[p[u] ].push_back(c);
up[p[v] + 1 ].push_back(-c);
}
struct Tree {
int id, m, l, r;
}tr[maxn << 2];
void build(int o, int l, int r) {
tr[o].l = l; tr[o].r = r;
tr[o].m = 0;
tr[o].id = l;
if(l == r) {
return ;
}
int mid = (l + r) >> 1;
build(o<<1, l, mid);
build(o<<1|1, mid+1, r);
}
void push_up(int o) {
if(tr[o<<1].m >= tr[o<<1|1].m) tr[o].id = tr[o<<1].id;
else tr[o].id = tr[o<<1|1].id;
tr[o].m = max(tr[o<<1].m, tr[o<<1|1].m);
}
void update(int o, int l, int r, int k, int d) {
int L = tr[o].l, R = tr[o].r;
if(L == R && L == k) {
tr[o].m += d;
return ;
}
int mid = (L + R) >> 1;
if(mid >= k) update(o<<1, l, r, k, d);
else if(mid < k) update(o<<1|1, l, r, k, d);
push_up(o);
}
int ans[maxn];
int main()
{
//freopen("/Users/maoxiangsun/MyRepertory/acm/code/i.txt", "r", stdin);
while(~scanf("%d%d", &n, &m) && (n || m) ) {
init();
for(int i = 0; i < n - 1; i++) {
int u, v;
scanf("%d%d", &u, &v);
addedge(u, v);
addedge(v, u);
}
dfs1(1, 0, 0);
dfs2(1, 1);
for(int i = 0; i < m; i++) {
int u, v, c;
scanf("%d%d%d", &u, &v, &c);
Change(u, v, c);
}
build(1, 0, maxn);
for(int i = 1; i <= n; i++) {
for(auto & v : up[i]) {
if(v < 0) {
update(1, 1, maxn, -v, -1);
}
else update(1, 1, maxn, v, 1);
}
ans[fp[i]] = tr[1].id;
}
for(int i = 1; i <= n; i++) {
printf("%d\n", ans[i]);
}
}
return 0;
}
/*
2 4
1 2
1 1 1
1 2 2
2 2 2
2 2 1
5 3
1 2
3 1
3 4
5 3
2 3 3
1 5 2
3 3 3
0 0
*/