http://blog.acmol.com/category/algorithm/
第一题:现在想通过交换相邻元素的操作把一个给定序列交换成有序,最少需要交换的次数是多少?比如3 1 2 4 5需要最少交换2次。
答案:需要交换的最少次数为该序列的逆序数。
证明:可以先将最大数交换到最后,由于是相邻两个数交换,需要交换的次数为最大数后面的数的个数(可以看做是最大数的逆序数),然后,交换过后,去除最大数,再考虑当前最大数也需要其逆序数次交换。则每个数都需要交换其逆序数次操作,则总最少交换次数为序列总体的逆序数。
第二题:现在想通过交换任意两个元素的操作把一个给定序列交换成有序,最少需要交换的次数是多少?
答案:我认为是数字的总个数减去循环节的个数。
循环节的求法是,先将数组排序,然后根据之前的坐标和排序之后的坐标,构建成一个有向图,然后在这个图上找到环
对于第二题有另一种方法:
http://blog.csdn.net/yysdsyl/article/details/4311031
e.g. { 2, 3, 1, 5, 6, 4}
231564 -> 6 mismatch
two cycles -> 123 and 456
swap 1,2 then 2,3, then 4,5 then 5,6 -> 4 swaps to sort
Probably the easiest algorithm would be to use a bitarray. Initialize it to 0, then start at the first 0. Swap the number there to the right place and put a 1 there. Continue until the current place holds the right number. Then move on to the next 0
Example:
231564
000000
-> swap 2,3
321564
010000
-> swap 3,1
123564
111000
-> continue at next 0; swap 5,6
123654
111010
-> swap 6,4
123456
111111
-> bitarray is all 1's, so we're done.
代码:
#include <iostream>
#include <algorithm>
using namespace std;
template <typename T>
int GetMinimumSwapsForSorted(T seq[], int n)
{
bool* right_place_flag = new bool[n];
T* sorted_seq = new T[n];
int p ,q;
copy(seq, seq + n, sorted_seq);
sort(sorted_seq, sorted_seq + n); 可采用效率更高的排序算法
for(int i = 0; i < n; i++)
{
if(seq[i] != sorted_seq[i])
right_place_flag[i] = false;
else
right_place_flag[i] = true;
}
p = 0;
int minimumswap = 0;
while(1)
{
while(right_place_flag[p])
p++;
q = p + 1;
此种找法只对无重复序列能得出minimum swaps
while(q < n)
{
if(!right_place_flag[q] && sorted_seq[q] == seq[p])
break;
q++;
}
if(q >= n || p >= n)
break;
right_place_flag[q] = true;
if(seq[q] == sorted_seq[p])
right_place_flag[p] = true;
swap(seq[p], seq[q]);
minimumswap++;
}
delete[] sorted_seq;
delete[] right_place_flag;
return minimumswap;
}
int _tmain(int argc, _TCHAR* argv[])
{
int seq[] = {3, 2, 1, 5, 6, 8, 4, 7 };//{2,3,1,5,6,4};//{2,3,2,4,7,6,3,5};
int n = sizeof(seq) / sizeof(int);
cout<<"minimum swaps : "<<GetMinimumSwapsForSorted(seq, n)<<endl;
system("pause");
return 0;
}
也就是依次将元素放在其应该在的位置