题目描述
有两个大小分别为m和n的有序数组A和B。请找出这两个数组的中位数。你需要给出时间复杂度在O(log (m+n))以内的算法。
/*
** 获取两个数组的中位数
*/
public double findMedianSortedArrays(int[] A, int[] B) {
int m = A.length;//数组A的长度
int n = B.length;//数组B的长度
int l = (m+n+1)/2;
int r = (m+n+2)/2;
/*取两个数的平均值,即适用于总长度m+n是奇数的情况,也适用于是偶数的情况。
* 奇数时,两次调用所获得的值相等;
偶数时,两次调用所获得的值不等。中位数即为两个值的平均值*/
return (getKth(A,0,B,0,l)+getKth(A,0,B,0,r))/2.0;
}
/*获取数组A和数组B结合后的第k小元素(即中位数)
* s1:数组A当前的开始下标
* s2:数组B当前的开始下标
*/
private int getKth(int[] A, int s1, int[] B, int s2, int k){
if(A.length==0){//1.数组A为空,返回数组B的中位数
return B[s2+k-1];
}
if(B.length==0){//2.数组B为空,返回数组A的中位数
return A[s1+k-1];
}
if(k==1){
return Math.min(A[s1],B[s2]);
}
//4.A和B都有多个元素
/*在数组A中找到第k/2小元素a,在数组B中找到第k/2小元素b,
**1)如果a和b相等,那么第k小元素就是a或者b了,
**2)如果a小于b,那么总体的第k小元素不可能在a的第k/2小元素之前,那么就可以将其舍弃了
**3)反之如果a大于b,也就可以舍弃b的第k/2小之前的元素了。*/
int mida = Integer.MAX_VALUE;
int midb = Integer.MAX_VALUE;
if(s1+k/2-1<A.length){
mida = A[s1+k/2-1];
}
if(s2+k/2-1<B.length){
midb = B[s2+k/2-1];
}
if(mida<midb){//去除A中小的部分,继续递归寻找
return getKth(A,s1+k/2,B,s2,k-k/2);
}else{//即mina>minb 去除B中小的部分,继续递归寻找
return getKth(A,s1,B,s2+k/2,k-k/2);
}
}