例题1:在区间内找尽可能少的点,能够命中所有区间
也是对开始和结束时间排序(结束时间从小到大排),每次选取结束时间点作为一个点,命中的区间数最大
如果选取一个区间的终点,命中了多个区间,接着再从未命中区间的终点开始选取点


例题2(在上题基础上的提高):要求每个区间有多个点
输入:
n(表示n个区间)
接下来n行输入 (每行三个数)
每个区间的开始时间 结束时间 含有点的个数
输出:
最少需要多少点
例如
输入:

输出:
![]()


import java.util.Arrays;
import java.util.Scanner;
public class Main {
/*
*思路:(1)首先将每个任务的开始时间、结束时间、需要包含的点封装在对象中,并按照结束时间递增排序(结束时间相同,按照开始时间递增排序)
* (2)依次遍历每一个区间
* 查找该区间已存在的点
* 如果已存在的点==其需要的点,则继续遍历下一个区间
* 如果已存在的点<其需要的点,则从右向左为其分配点,并更新其所需的点,直到其所需的点为0
*关键:判断某个点是否已存在:建立一个数组axs作为数轴,其范围1~所有任务中最晚的结束时间,如果位置i已经设点,将axs[i]=1
*测试数据:
5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1
*/
public static void main(String[] args) {
//(1)输入相关数据
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[][] a = new int[n][3];
for(int i=0;i<n;i++) {
a[i][0] = sc.nextInt();//开始时间
a[i][1] = sc.nextInt();//结束时间
a[i][2] = sc.nextInt();//需要的点数
}
//(2)将每个区间开始、结束时间、需要的点数封装起来,并排序
Task[] task = new Task[n];
for(int i=0;i<n;i++) {
task[i] = new Task(a[i][0],a[i][1],a[i][2]);
}
//排序
Arrays.sort(task);
//(3)设置一个数组axs作为数轴,记录被占用的点。1表示被占用
int max = task[n-1].e;//最后一个任务的结束时间是数轴中最大的点
int[] axs = new int[max+1];//下标0~max
//(4)依次遍历每个任务,为其加点
for(int i=0;i<n;i++) {
int start=task[i].s;
int end=task[i].e;
int sum = getSumPoint(start,end,axs);//获取当前区间已存在的点数
while(sum<task[i].c) {//点数不足,继续从右向左加点.注意:是while循环
if(axs[end]==0) {//最右端没有加点
axs[end]=1;
end--;
sum++;
}else {
end--;
}
}
}
System.out.println(getSumPoint(1, max, axs));
}
//获取区间s~e中已存在的点数
private static int getSumPoint(int s, int e, int[] axs) {
int cnt=0;
for(int i=s;i<=e;i++) {
cnt+=axs[i];
}
return cnt;
}
}
class Task implements Comparable<Task>{
int s;//开始时间
int e;//结束时间
int c;//需要的点数
public Task(int s, int e, int c) {
super();
this.s = s;
this.e = e;
this.c = c;
}
@Override
public int compareTo(Task other) {
int x = this.e-other.e;
if(x==0) {//结束时间相等
return this.s-other.s;
}else {
return x;
}
}
}
本文介绍了一种通过排序和逐个区间检查的方法来解决区间覆盖问题。具体来说,该算法首先将每个区间的开始时间和结束时间进行排序,然后通过一个数轴数组跟踪已设置的点,确保每个区间至少包含所需的点数。
466

被折叠的 条评论
为什么被折叠?



