§3.1 矩阵的初等变换
§3.2 矩阵的秩
§3.3 线性方程组的解
§3.2 矩阵的秩
§3.3 线性方程组的解
3.1 矩阵的初等变换
矩阵的初等行变换:
1.对调两行(对调
i
i
i,
j
j
j两行,记为
r
i
↔
r
j
r_{i} \leftrightarrow r_{j}
ri↔rj);
2.以数
k
≠
0
k \neq 0
k̸=0乘某一行所有元素(第
i
i
i行乘
k
k
k,记作
r
i
×
k
r_{i}×k
ri×k);
3.把某一行所有元素的
k
k
k倍加到另一行对应的元素上去(第
j
j
j行的
k
k
k倍加到第
i
i
i行上,记作
r
i
+
k
r
j
r_{i}+kr_{j}
ri+krj)。
将行换为列,即为矩阵的初等列变换。
r
r
r变为
c
c
c.
如果矩阵
A
A
A经过有限次初等行变换成矩阵
B
B
B,就称矩阵
A
A
A和
B
B
B行等价(记作
A
∼
r
B
A \overset{r}\thicksim B
A∼rB);如果矩阵
A
A
A经过有限次初等列变换成矩阵
B
B
B,就称矩阵
A
A
A和
B
B
B列等价(记作
A
∼
c
B
A \overset{c}\thicksim B
A∼cB);如果矩阵
A
A
A经过有限次初等变换成矩阵
B
B
B,就称矩阵
A
A
A和
B
B
B等价(记作
A
∼
B
A \thicksim B
A∼B)。
性质
1.反身性
A
∼
A
A \thicksim A
A∼A;
2.对称性 若
A
∼
B
A \thicksim B
A∼B,则
B
∼
A
B \thicksim A
B∼A;
3.传递性 若
A
∼
B
,
B
∼
C
A \thicksim B,B \thicksim C
A∼B,B∼C,则
A
∼
C
A \thicksim C
A∼C.
行阶梯矩阵
行最简形矩阵:非零行的得一个元素是1,且这些非零元所在的列的其他元素都为0.
标准形:左上角是一个单位阵,其余元素全为零。
定理
设
A
×
B
A×B
A×B都是
m
×
n
m×n
m×n的矩阵,那么:
1.
A
∼
r
B
A \overset{r}\thicksim B
A∼rB的充要条件是存在
m
m
m阶可逆矩阵
P
P
P,使
P
A
=
B
PA=B
PA=B;
2.
A
∼
r
B
A \overset{r}\thicksim B
A∼rB的充要条件是存在
n
n
n阶可逆矩阵
Q
Q
Q,使
A
Q
=
B
AQ=B
AQ=B;
3.
A
∼
r
B
A \overset{r}\thicksim B
A∼rB的充要条件是存在
m
m
m阶可逆矩阵
P
P
P和
n
n
n阶可逆矩阵
Q
Q
Q,使
P
A
Q
=
B
PAQ=B
PAQ=B.
由单位阵
E
E
E经过一次初等变换得到的矩阵称为初等矩阵。
性质
设 A A A是一个 m × n m×n m×n矩阵,对 A A A施行一次初等行变换,相当于在 A A A的左边乘以相应的 m m m阶初等矩阵;设 A A A是一个 m × n m×n m×n矩阵,对 A A A施行一次初等列变换,相当于在 A A A的右边乘以相应的 n n n阶初等矩阵。
性质
方阵 A A A可逆的充要条件是存在有限个初等矩阵 P 1 , P 2 , ⋯   , P l P_{1},P_{2}, \cdots,P_{l} P1,P2,⋯,Pl,使 A = P 1 P 2 ⋯ P l A=P_{1}P_{2}\cdots P_{l} A=P1P2⋯Pl.
推论
方阵 A A A可逆的充要条件是 A ∼ r E A \overset{r}\thicksim E A∼rE.
3.2 矩阵的秩
给定一个
m
×
n
m×n
m×n的矩阵
A
A
A,它的标准形
F
=
(
E
r
O
O
O
)
m
×
n
F= \left( \begin{matrix} E_{r}&O\\ O&O \end{matrix} \right)_{m×n}
F=(ErOOO)m×n
由数
r
r
r完全确定,这个数也就是矩阵
A
A
A的行阶梯形中非零行的行数,这个数便是矩阵的秩。
在
m
×
n
m×n
m×n矩阵
A
A
A中,任取
k
k
k行
k
k
k列(
k
≤
m
,
k
≤
n
k \leq m, k \leq n
k≤m,k≤n),位于这些行列交叉处的
k
2
k^{2}
k2个元素,不改变它们在
A
A
A中所处位置次序而得的
k
k
k阶行列式,称为矩阵
A
A
A的
k
k
k阶子式。
设矩阵
A
A
A中有一个不等于0的
r
r
r阶子式
D
D
D,且全部
r
+
1
r+1
r+1阶(如果存在的话)子式全等于0,那么
D
D
D称为矩阵
A
A
A的最高阶非零子式,数
r
r
r称为矩阵
A
A
A的秩,记作
R
(
A
)
.
R(A).
R(A).并规定零矩阵的秩等于0。
定理
若 A ∼ B A \thicksim B A∼B,则 R ( A ) = R ( B ) R(A)=R(B) R(A)=R(B).
推论
若可逆矩阵
P
,
Q
P,Q
P,Q使
P
A
Q
=
B
PAQ=B
PAQ=B,则
R
(
A
)
=
R
(
B
)
R(A)=R(B)
R(A)=R(B);
m
a
x
{
R
(
A
)
,
R
(
B
)
}
≤
R
(
A
,
B
)
≤
R
(
A
)
+
R
(
B
)
max\{R(A),R(B)\} \leq R(A,B) \leq R(A)+R(B)
max{R(A),R(B)}≤R(A,B)≤R(A)+R(B);
R
(
A
+
B
)
≤
R
(
A
)
+
R
(
B
)
R(A+B) \leq R(A)+R(B)
R(A+B)≤R(A)+R(B);
R
(
A
B
)
≤
m
i
n
{
R
(
A
)
,
R
(
B
)
}
R(AB) \leq min\{R(A),R(B)\}
R(AB)≤min{R(A),R(B)};
若
A
m
×
n
B
n
×
l
=
O
A_{m×n}B_{n×l}=O
Am×nBn×l=O,则
R
(
A
)
+
R
(
B
)
≤
n
R(A)+R(B) \leq n
R(A)+R(B)≤n;
若
A
A
A是
n
n
n阶矩阵,则
R
(
A
+
E
)
+
R
(
A
−
E
)
≥
n
R(A+E)+R(A-E)\geq n
R(A+E)+R(A−E)≥n;
若
A
m
×
n
B
n
×
l
=
C
A_{m×n}B_{n×l}=C
Am×nBn×l=C,且
R
(
A
)
=
n
R(A)=n
R(A)=n,则
R
(
B
)
=
R
(
C
)
R(B)=R(C)
R(B)=R(C).
3.3 线性方程组的解
设有
n
n
n个未知数
m
m
m个方程组的线性方程组
(1)
{
a
11
x
1
+
a
12
x
2
+
⋯
+
a
1
n
x
n
=
b
1
,
a
21
x
1
+
a
22
x
2
+
⋯
+
a
2
n
x
n
=
b
2
,
⋯
⋯
⋯
a
m
1
x
1
+
a
m
2
x
2
+
⋯
+
a
m
n
x
n
=
b
m
,
\begin{cases} a_{11}x_{1}+a_{12}x_{2}+\cdots +a_{1n}x_{n}&=b_{1},\\ a_{21}x_{1}+a_{22}x_{2}+\cdots +a_{2n}x_{n}&=b_{2},\\ \cdots\cdots\cdots\\ a_{m1}x_{1}+a_{m2}x_{2}+\cdots +a_{mn}x_{n}&=b_{m}, \end{cases} \tag{1}
⎩⎪⎪⎪⎨⎪⎪⎪⎧a11x1+a12x2+⋯+a1nxna21x1+a22x2+⋯+a2nxn⋯⋯⋯am1x1+am2x2+⋯+amnxn=b1,=b2,=bm,(1)
可以写成以向量
x
x
x为未知元的向量方程
(2)
A
x
=
b
.
Ax=b\tag{2}.
Ax=b.(2)
线性方程组(1)如果有解,就称它是相容的,如果无解,就称它不相容。系数矩阵
A
A
A和增广矩阵
B
=
(
A
,
b
)
.
B=(A,b).
B=(A,b).
定理
n
n
n元线性方程组
A
x
=
b
Ax=b
Ax=b
无解的充要条件:
R
(
A
)
<
R
(
A
,
b
)
R(A)<R(A,b)
R(A)<R(A,b);
有唯一解的充要条件:
R
(
A
)
=
R
(
A
,
b
)
=
n
R(A)=R(A,b)=n
R(A)=R(A,b)=n;
有无限多解的充要条件:
R
(
A
)
=
R
(
A
,
b
)
<
n
R(A)=R(A,b)<n
R(A)=R(A,b)<n.
定理
n n n元齐次线性方程组 A x = 0 Ax=0 Ax=0有非零解的充要条件是 R ( A ) < n . R(A)<n. R(A)<n.
定理
线性方程组 A x = b Ax=b Ax=b有解的充要条件是 R ( A ) = R ( A , b ) R(A)=R(A,b) R(A)=R(A,b).
定理
矩阵方程 A X = B AX=B AX=B有解的充要条件是 R ( A ) = R ( A , B ) R(A)=R(A,B) R(A)=R(A,B).
定理
设 A B = C AB=C AB=C,则 R ( C ) ≤ m i n R ( A ) , R ( B ) R(C)\leq min{R(A),R(B)} R(C)≤minR(A),R(B).
《线性代数》同济大学第五版笔记