第三章 矩阵的初等变换与线性方程组 第一二三节 矩阵的初等变换/矩阵的秩/线性方程组的解

该博客围绕线性代数展开,介绍了矩阵的初等变换,包括行变换和列变换,以及等价关系、性质和相关定理;阐述了矩阵的秩的定义和计算方法,还有秩的相关定理与推论;探讨了线性方程组的解,给出了有无解、唯一解和多解的充要条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

§3.1 矩阵的初等变换
§3.2 矩阵的秩
§3.3 线性方程组的解

3.1 矩阵的初等变换

矩阵的初等行变换:

1.对调两行(对调 i i i, j j j两行,记为 r i ↔ r j r_{i} \leftrightarrow r_{j} rirj);
2.以数 k ≠ 0 k \neq 0 k̸=0乘某一行所有元素(第 i i i行乘 k k k,记作 r i × k r_{i}×k ri×k);
3.把某一行所有元素的 k k k倍加到另一行对应的元素上去(第 j j j行的 k k k倍加到第 i i i行上,记作 r i + k r j r_{i}+kr_{j} ri+krj)。
将行换为列,即为矩阵的初等列变换。 r r r变为 c c c.
如果矩阵 A A A经过有限次初等行变换成矩阵 B B B,就称矩阵 A A A B B B行等价(记作 A ∼ r B A \overset{r}\thicksim B ArB);如果矩阵 A A A经过有限次初等列变换成矩阵 B B B,就称矩阵 A A A B B B列等价(记作 A ∼ c B A \overset{c}\thicksim B AcB);如果矩阵 A A A经过有限次初等变换成矩阵 B B B,就称矩阵 A A A B B B等价(记作 A ∼ B A \thicksim B AB)。

性质

1.反身性 A ∼ A A \thicksim A AA
2.对称性 若 A ∼ B A \thicksim B AB,则 B ∼ A B \thicksim A BA
3.传递性 若 A ∼ B , B ∼ C A \thicksim B,B \thicksim C AB,BC,则 A ∼ C A \thicksim C AC.
行阶梯矩阵
行最简形矩阵:非零行的得一个元素是1,且这些非零元所在的列的其他元素都为0.
标准形:左上角是一个单位阵,其余元素全为零。

定理

A × B A×B A×B都是 m × n m×n m×n的矩阵,那么:
1. A ∼ r B A \overset{r}\thicksim B ArB的充要条件是存在 m m m阶可逆矩阵 P P P,使 P A = B PA=B PA=B;
2. A ∼ r B A \overset{r}\thicksim B ArB的充要条件是存在 n n n阶可逆矩阵 Q Q Q,使 A Q = B AQ=B AQ=B;
3. A ∼ r B A \overset{r}\thicksim B ArB的充要条件是存在 m m m阶可逆矩阵 P P P n n n阶可逆矩阵 Q Q Q,使 P A Q = B PAQ=B PAQ=B.
由单位阵 E E E经过一次初等变换得到的矩阵称为初等矩阵

性质

A A A是一个 m × n m×n m×n矩阵,对 A A A施行一次初等行变换,相当于在 A A A的左边乘以相应的 m m m阶初等矩阵;设 A A A是一个 m × n m×n m×n矩阵,对 A A A施行一次初等列变换,相当于在 A A A的右边乘以相应的 n n n阶初等矩阵。

性质

方阵 A A A可逆的充要条件是存在有限个初等矩阵 P 1 , P 2 , ⋯   , P l P_{1},P_{2}, \cdots,P_{l} P1,P2,,Pl,使 A = P 1 P 2 ⋯ P l A=P_{1}P_{2}\cdots P_{l} A=P1P2Pl.

推论

方阵 A A A可逆的充要条件是 A ∼ r E A \overset{r}\thicksim E ArE.

3.2 矩阵的秩

给定一个 m × n m×n m×n的矩阵 A A A,它的标准形
F = ( E r O O O ) m × n F= \left( \begin{matrix} E_{r}&O\\ O&O \end{matrix} \right)_{m×n} F=(ErOOO)m×n
由数 r r r完全确定,这个数也就是矩阵 A A A的行阶梯形中非零行的行数,这个数便是矩阵的

m × n m×n m×n矩阵 A A A中,任取 k k k k k k列( k ≤ m , k ≤ n k \leq m, k \leq n km,kn),位于这些行列交叉处的 k 2 k^{2} k2个元素,不改变它们在 A A A中所处位置次序而得的 k k k阶行列式,称为矩阵 A A A k k k阶子式
设矩阵 A A A中有一个不等于0的 r r r阶子式 D D D,且全部 r + 1 r+1 r+1阶(如果存在的话)子式全等于0,那么 D D D称为矩阵 A A A最高阶非零子式,数 r r r称为矩阵 A A A,记作 R ( A ) . R(A). R(A).并规定零矩阵的秩等于0。

定理

A ∼ B A \thicksim B AB,则 R ( A ) = R ( B ) R(A)=R(B) R(A)=R(B).

推论

若可逆矩阵 P , Q P,Q P,Q使 P A Q = B PAQ=B PAQ=B,则 R ( A ) = R ( B ) R(A)=R(B) R(A)=R(B);
m a x { R ( A ) , R ( B ) } ≤ R ( A , B ) ≤ R ( A ) + R ( B ) max\{R(A),R(B)\} \leq R(A,B) \leq R(A)+R(B) max{R(A),R(B)}R(A,B)R(A)+R(B);
R ( A + B ) ≤ R ( A ) + R ( B ) R(A+B) \leq R(A)+R(B) R(A+B)R(A)+R(B);
R ( A B ) ≤ m i n { R ( A ) , R ( B ) } R(AB) \leq min\{R(A),R(B)\} R(AB)min{R(A),R(B)};
A m × n B n × l = O A_{m×n}B_{n×l}=O Am×nBn×l=O,则 R ( A ) + R ( B ) ≤ n R(A)+R(B) \leq n R(A)+R(B)n;
A A A n n n阶矩阵,则 R ( A + E ) + R ( A − E ) ≥ n R(A+E)+R(A-E)\geq n R(A+E)+R(AE)n;
A m × n B n × l = C A_{m×n}B_{n×l}=C Am×nBn×l=C,且 R ( A ) = n R(A)=n R(A)=n,则 R ( B ) = R ( C ) R(B)=R(C) R(B)=R(C).

3.3 线性方程组的解

设有 n n n个未知数 m m m个方程组的线性方程组
(1) { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 , ⋯ ⋯ ⋯ a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m , \begin{cases} a_{11}x_{1}+a_{12}x_{2}+\cdots +a_{1n}x_{n}&=b_{1},\\ a_{21}x_{1}+a_{22}x_{2}+\cdots +a_{2n}x_{n}&=b_{2},\\ \cdots\cdots\cdots\\ a_{m1}x_{1}+a_{m2}x_{2}+\cdots +a_{mn}x_{n}&=b_{m}, \end{cases} \tag{1} a11x1+a12x2++a1nxna21x1+a22x2++a2nxnam1x1+am2x2++amnxn=b1,=b2,=bm,(1)
可以写成以向量 x x x为未知元的向量方程
(2) A x = b . Ax=b\tag{2}. Ax=b.(2)
线性方程组(1)如果有解,就称它是相容的,如果无解,就称它不相容。系数矩阵 A A A和增广矩阵 B = ( A , b ) . B=(A,b). B=(A,b).

定理

n n n元线性方程组 A x = b Ax=b Ax=b
无解的充要条件: R ( A ) &lt; R ( A , b ) R(A)&lt;R(A,b) R(A)<R(A,b);
有唯一解的充要条件: R ( A ) = R ( A , b ) = n R(A)=R(A,b)=n R(A)=R(A,b)=n;
有无限多解的充要条件: R ( A ) = R ( A , b ) &lt; n R(A)=R(A,b)&lt;n R(A)=R(A,b)<n.

定理

n n n元齐次线性方程组 A x = 0 Ax=0 Ax=0有非零解的充要条件是 R ( A ) &lt; n . R(A)&lt;n. R(A)<n.

定理

线性方程组 A x = b Ax=b Ax=b有解的充要条件是 R ( A ) = R ( A , b ) R(A)=R(A,b) R(A)=R(A,b).

定理

矩阵方程 A X = B AX=B AX=B有解的充要条件是 R ( A ) = R ( A , B ) R(A)=R(A,B) R(A)=R(A,B).

定理

A B = C AB=C AB=C,则 R ( C ) ≤ m i n R ( A ) , R ( B ) R(C)\leq min{R(A),R(B)} R(C)minR(A),R(B).

《线性代数》同济大学第五版笔记

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值