这道题目是在做腾讯第二届编程马拉松大赛中的 湫湫系列故事——设计风景线。具体的题目,我们可以在hdoj上找到,下面是链接http://acm.hdu.edu.cn/showproblem.php?pid=4514
在求一棵树的最长路径,也就是这棵树中距离最长的两个点,我首先使用的是dfs,但是可能是dfs的层数太深了,导致了Stack_Overflow的错误。然后在网上找到了此类型题目的解法。原来是一道经典的图论题目。哎,图论不懂,真的纠结啊。 http://blog.sina.com.cn/s/blog_77dc9e0801015m8z.html上面的连接是我在找这种类型题目找到的。
求一棵树中距离最远的两个点,我们可以随便找一个点u,然后进行两次bfs。
第一次bfs,我们从u点出发,能找到离u点最远的点v。
第二次bfs,我们从v点开始,能找到离v点最远距离的点s, v-s之间的距离,就是这颗树的最远点的距离。
这里分两种情况进行分析。
第一, 当u点是在最长路径上面的时候,则v是最长路径上的一端。如果v不是。则假设最长路径是u-v1 + u-v2。这样的话,这样u-v1 < u-v 且 u-v2 < u-v。u-v1和u-v2中,一定有一条路径是和u-v只有u这样一个交点,设这一条路径是u-v1,则路径u-v1 + u-v大于u-v1 + u-v2。所以假设不符合。则v是最长路径的一端。
在求一棵树的最长路径,也就是这棵树中距离最长的两个点,我首先使用的是dfs,但是可能是dfs的层数太深了,导致了Stack_Overflow的错误。然后在网上找到了此类型题目的解法。原来是一道经典的图论题目。哎,图论不懂,真的纠结啊。 http://blog.sina.com.cn/s/blog_77dc9e0801015m8z.html上面的连接是我在找这种类型题目找到的。
求一棵树中距离最远的两个点,我们可以随便找一个点u,然后进行两次bfs。
第一次bfs,我们从u点出发,能找到离u点最远的点v。
第二次bfs,我们从v点开始,能找到离v点最远距离的点s, v-s之间的距离,就是这颗树的最远点的距离。
这里分两种情况进行分析。
第一, 当u点是在最长路径上面的时候,则v是最长路径上的一端。如果v不是。则假设最长路径是u-v1 + u-v2。这样的话,这样u-v1 < u-v 且 u-v2 < u-v。u-v1和u-v2中,一定有一条路径是和u-v只有u这样一个交点,设这一条路径是u-v1,则路径u-v1 + u-v大于u-v1 + u-v2。所以假设不符合。则v是最长路径的一端。
第二,当u没有在最长路径上,则u-v的路径上,和最长路径一定会有交点。这里设最长路径为s-e。如果最长路径和u-v的路径没有交点,则最长路径为s-e-u-v,这样和假设s-e是最长路径不符合。所以一定有交点,设交点为c,则最长路径为s-c-e.u到v点路径为u-c-v。假设v不是最长路径的一端,s-c-e两条路径中,如果两条都和c-v都只有一个交点,则两条路径应该都比c-v大。这样其中一条s-c或者c-e和u-c就只有一个交点,则距离u最远的点就不是v了。同样的到底,当之后一条和c-v有以上的交点。则可推出距离u最远的点也不是v。所以假设不成立,所以v在最长路径的一端。
这里顺便附上拿到题目的源码。
http://acm.hdu.edu.cn/showproblem.php?pid=4514
#include <iostream>
#include <cstdio>
#include <memory.h>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
struct Node{
int next;
int length;
};
queue<int> Q;
vector<Node>V[101000];
int bin[101000];
bool gash[101000];
int dis[101000];
int find(int x) {
if (x == bin[x]) return x;
return bin[x] = find(bin[x]);
}
int cal(int pos) {
int maxLength = -1;
int index = -1;
while (!Q.empty()) Q.pop();
memset(gash , 0 , sizeof(gash));
gash[pos] = true;
dis[pos] = 0;
Q.push(pos);
while (!Q.empty()) {
int temp = Q.front();
Q.pop();
int size = V[temp].size();
for (int i=0 ; i<size ; i++) {
int next = V[temp][i].next;
if (!gash[next]) {
gash[next] = true;
dis[next] = dis[temp] + V[temp][i].length;
if (dis[next] > maxLength) {
maxLength = dis[next];
index = next;
}
Q.push(next);
}
}
}
int ret = 0;
if (index != -1) {
while (!Q.empty()) Q.pop();
memset(gash , 0 , sizeof(gash));
gash[index] = true;
dis[index] = 0;
Q.push(index);
while (!Q.empty()) {
int temp = Q.front();
Q.pop();
int size = V[temp].size();
for (int i=0 ; i<size ; i++) {
int next = V[temp][i].next;
if (!gash[next]) {
gash[next] = true;
dis[next] = dis[temp] + V[temp][i].length;
if (dis[next] > ret) {
ret = dis[next];
}
Q.push(next);
}
}
}
}
return ret;
}
int main() {
int n , m;
bool flag;
int ans;
while (scanf("%d %d" , &n , &m) != EOF) { for (int i=0 ; i<=n ; i++) {
V[i].clear();
}
for (int i=0 ; i<=n ; i++) {
bin[i] = i;
}
flag = false;
int a , b , length;
for (int i=0 ; i<m ; i++) {
scanf("%d %d %d" , &a , &b , &length);
int fa = find(a);
int fb = find(b);
if (fa != fb) {
bin[fa] = fb;
}
else {
flag = true;
}
Node E;
E.next = b;
E.length = length;
V[a].push_back(E);
E.next = a;
V[b].push_back(E);
}
if (flag) {
printf("YES\n");
continue;
}
ans = 0;
memset(gash , 0 , sizeof(gash));
for (int i=1 ; i<=n ; i++) {
if (!gash[i]) {
int temp = cal(i);
if (ans < temp) ans = temp;
}
}
printf("%d\n" , ans);
}
return 0;
}