求一个树中距离最远的两点之间的距离

1 篇文章 0 订阅
1 篇文章 0 订阅
这道题目是在做腾讯第二届编程马拉松大赛中的 湫湫系列故事——设计风景线。具体的题目,我们可以在hdoj上找到,下面是链接http://acm.hdu.edu.cn/showproblem.php?pid=4514


  在求一棵树的最长路径,也就是这棵树中距离最长的两个点,我首先使用的是dfs,但是可能是dfs的层数太深了,导致了Stack_Overflow的错误。然后在网上找到了此类型题目的解法。原来是一道经典的图论题目。哎,图论不懂,真的纠结啊。 http://blog.sina.com.cn/s/blog_77dc9e0801015m8z.html上面的连接是我在找这种类型题目找到的。


  求一棵树中距离最远的两个点,我们可以随便找一个点u,然后进行两次bfs。
  第一次bfs,我们从u点出发,能找到离u点最远的点v。
  第二次bfs,我们从v点开始,能找到离v点最远距离的点s, v-s之间的距离,就是这颗树的最远点的距离。


  这里分两种情况进行分析。
  第一, 当u点是在最长路径上面的时候,则v是最长路径上的一端。如果v不是。则假设最长路径是u-v1 + u-v2。这样的话,这样u-v1 < u-v 且 u-v2 < u-v。u-v1和u-v2中,一定有一条路径是和u-v只有u这样一个交点,设这一条路径是u-v1,则路径u-v1 + u-v大于u-v1 + u-v2。所以假设不符合。则v是最长路径的一端。


  第二,当u没有在最长路径上,则u-v的路径上,和最长路径一定会有交点。这里设最长路径为s-e。如果最长路径和u-v的路径没有交点,则最长路径为s-e-u-v,这样和假设s-e是最长路径不符合。所以一定有交点,设交点为c,则最长路径为s-c-e.u到v点路径为u-c-v。假设v不是最长路径的一端,s-c-e两条路径中,如果两条都和c-v都只有一个交点,则两条路径应该都比c-v大。这样其中一条s-c或者c-e和u-c就只有一个交点,则距离u最远的点就不是v了。同样的到底,当之后一条和c-v有以上的交点。则可推出距离u最远的点也不是v。所以假设不成立,所以v在最长路径的一端。




这里顺便附上拿到题目的源码。

http://acm.hdu.edu.cn/showproblem.php?pid=4514

#include <iostream>
#include <cstdio>
#include <memory.h>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;

struct Node{
	int next;
	int length;
};

queue<int> Q;
vector<Node>V[101000];
int bin[101000];
bool gash[101000];
int dis[101000];

int find(int x) {
	if (x == bin[x]) return x;
	return bin[x] = find(bin[x]);
}

int cal(int pos) {
	int maxLength = -1;
	int index = -1;

	while (!Q.empty()) Q.pop();
	memset(gash , 0 , sizeof(gash));

	gash[pos] = true;
	dis[pos] = 0;
	Q.push(pos);
	while (!Q.empty()) {
		int temp = Q.front();
		Q.pop();
		int size = V[temp].size();
		for (int i=0 ; i<size ; i++) {
			int next = V[temp][i].next;
			if (!gash[next]) {
				gash[next] = true;
				dis[next] = dis[temp] + V[temp][i].length;
				if (dis[next] > maxLength) {
					maxLength = dis[next];
					index = next;
				}
				Q.push(next);
			}
		}
	}

	int ret = 0;
	if (index != -1) {
		while (!Q.empty()) Q.pop();
		memset(gash , 0 , sizeof(gash));

		gash[index] = true;
		dis[index] = 0;
		Q.push(index);
		while (!Q.empty()) {
			int temp = Q.front();
			Q.pop();
			int size = V[temp].size();
			for (int i=0 ; i<size ; i++) {
				int next = V[temp][i].next;
				if (!gash[next]) {
					gash[next] = true;
					dis[next] = dis[temp] + V[temp][i].length;
					if (dis[next] > ret) {
						ret = dis[next];
					}
					Q.push(next);
				}
			}
		}
	}
	return ret;
}

int main() {
	int n , m;
	bool flag;
	int ans;

	while (scanf("%d %d" , &n , &m) != EOF) { for (int i=0 ; i<=n ; i++) {
			V[i].clear();
		}
		for (int i=0 ; i<=n ; i++) {
			bin[i] = i;
		}
		flag = false;

		int a , b , length;
		for (int i=0 ; i<m ; i++) {
			scanf("%d %d %d" , &a , &b , &length);
			int fa = find(a); 
			int fb = find(b);
			if (fa != fb) {
				bin[fa] = fb;
			}
			else {
				flag = true;
			}
			Node E;
			E.next = b;
			E.length = length;
			V[a].push_back(E);
			E.next = a;
			V[b].push_back(E);
		}

		if (flag) {
			printf("YES\n");
			continue;
		}
		
		ans = 0;
		memset(gash , 0 , sizeof(gash));
		for (int i=1 ; i<=n ; i++) {
			if (!gash[i]) {
				int temp = cal(i);
				if (ans < temp) ans = temp;
			}
		}
		printf("%d\n" , ans); 
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值