Kaggle Digit Recognizer 基于sklearn实现的手写数字识别 for MNIST data

本文介绍了如何使用sklearn库在Kaggle的Digit Recognizer比赛中实现手写数字识别,详细解析了解决方案,并分享了一次训练达到98.2%预测准确率的结果。通过链接提供了数据集的下载地址和Kaggle竞赛数据。
摘要由CSDN通过智能技术生成

Kaggle Digit Recognizer 基于sklearn实现的手写数字识别 for MNIST data

一、手写数字识别数据集

手写数字识别数据集是非常著名的数据集。

介绍和下载地址:http://yann.lecun.com/exdb/mnist/

我的训练集和测试集:https://www.kaggle.com/c/digit-recognizer/data

二、解决方案(附详细注释)

# coding=utf-8
import numpy
from sklearn.decomposition import PCA
from sklearn.svm import SVC

COMPONENT_NUM = 35  # 设置pca降维的维度值

print('Read training data...')
with open('train.csv', 'r') as reader:
    reader.readline()  # 去掉第一行表头
    train_label = []
    train_data = []
    for line in reader.readlines():
        data = list(
            map(int, line.rstrip().split(',')))  # map()函数接收两个参数,一个是函数,一
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值