LRU简单实践

本文介绍了LRU(最近最少使用)缓存淘汰算法,并提供了两种实现方式:一是通过自定义的数据结构结合HashMap和链表,二是利用JDK内置的LinkedHashMap。在自定义实现中,详细展示了LRU的添加、删除和查找操作;在LinkedHashMap实现中,通过重写removeEldestEntry方法来达到缓存满时淘汰最不常用项的效果。
摘要由CSDN通过智能技术生成

一、介绍

LRU是Least Recently Used的缩写,即最近最少使用,是一种常用的页面置换算法,选择最近最久未使用的页面予以淘汰。

二、编码实现(高手绕行)

了解LRU的应该都其低层实现的数据结构主要是是Map和链表,如下

package com.zte.sdn.oscp.xls.read;

import lombok.Data;

import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;


public class LRU {
	/**LRU存在数据容量**/
    private int capacity = 5;
    
 	/**主要用以快速判断是否存在数据**/
    private Map<String, Node> nodeMap = new ConcurrentHashMap<>();

    private Node tail;
    private Node head;

    public LRU() {
        tail = new Node();
        head = new Node();
        tail.pre = head;
        head.nex = tail;
        tail.nex = null;
        head.pre = null;
    }

    public String getValue(String key) {
        String result = null;
        if (nodeMap.containsKey(key)) {
            Node node = nodeMap.get(key);
            result = node.value;
            //刷新位置(移动到头)
            removeNode(node);
            addHead(node);
        }
        return result;
    }

    public void putValue(String key, String value) {
        if (nodeMap.containsKey(key)) {
            Node node = nodeMap.get(key);
            node.setValue(value);
            //刷新位置(移动到头)
            removeNode(node);
            addHead(node);
        } else {
            Node node = new Node();
            node.setValue(value);
            if (nodeMap.size() < capacity) {
                addHead(node);
            } else {
                removeNode(tail.pre);
                addHead(node);
            }
            nodeMap.put(key,node);
        }
    }

    private void addHead(Node node) {
        node.nex = head.nex;
        node.nex.pre = node;
        head.nex = node;
        node.pre = head;
    }

    private void removeNode(Node node) {
        node.pre.nex = node.nex;
        node.nex.pre = node.pre;
    }

    @Override
    public String toString() {

        StringBuffer output = new StringBuffer();
        Node node = head.nex;
        while (node != null && node.nex != null) {
            output.append(node.value).append(",");
            node = node.nex;
        }

        return output.toString();
    }

    @Data
    class Node {
        private String value;

        private Node pre;
        private Node nex;
    }

    public static void main(String[] args) {
        LRU lru = new LRU();
        lru.putValue("1", "1");
        lru.putValue("2", "2");
        lru.putValue("3", "3");
        lru.putValue("4", "4");
        System.out.println("4:" + lru);
        lru.putValue("5", "5");
        System.out.println("5:" + lru);
        lru.putValue("6", "6");
        System.out.println("6:" + lru);
        lru.putValue("4", "44");
        System.out.println("7:" + lru);
        String value = lru.getValue("2");
        System.out.println("8:" + lru);
    }
}

三、LinkedHashMap实现

JDK中提供了LinkedHashMap数据结构,LinkedHashMap底层就是用的HashMap加双链表实现的,而且本身已经实现了按照访问顺序的存储。此外,LinkedHashMap中本身就实现了一个方法removeEldestEntry用于判断是否需要移除最不常读取的数,方法默认是直接返回false,不会移除元素,所以需要重写该方法。即当缓存满后就移除最不常用的数

public class LRU<K,V> {
 
  private static final float hashLoadFactory = 0.75f;
  private LinkedHashMap<K,V> map;
  private int cacheSize;
 
  public LRU(int cacheSize) {
    this.cacheSize = cacheSize;
    int capacity = (int)Math.ceil(cacheSize / hashLoadFactory) + 1;
    map = new LinkedHashMap<K,V>(capacity, hashLoadFactory, true){
      private static final long serialVersionUID = 1;
 
      @Override
      protected boolean removeEldestEntry(Map.Entry eldest) {
        return size() > LRU.this.cacheSize;
      }
    };
  }
 
  public synchronized V get(K key) {
    return map.get(key);
  }
 
  public synchronized void put(K key, V value) {
    map.put(key, value);
  }
 
  public synchronized void clear() {
    map.clear();
  }
 
  public synchronized int usedSize() {
    return map.size();
  }
 
  public void print() {
    for (Map.Entry<K, V> entry : map.entrySet()) {
      System.out.print(entry.getValue() + "--");
    }
    System.out.println();
  }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值