LCA最近公共祖先(tarjan离线算法)



/**LCA算法:首先用CD ..回退到最近公共祖先,再一次性到达目的地。*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <map>
#include <vector>
#include <algorithm>
using namespace std;
#define mem(a)  memset(a,0,sizeof(a))
#define maxn 1502
#define M   50002
int indegree[maxn];// 用来查找root
int fa[maxn],vis[maxn],query[maxn][maxn];
vector<int> edge[maxn];
map<string,int>m;
int n;//图中节点的个数,编号1~n
struct Allquery{
    int a,b;
}p[M];
void init()
{
    m.clear();
    mem(indegree);
    mem(vis);
    mem(query);
    for(int i=1;i<maxn;i++)
        edge[i].clear();
}
int find_father(int i)
{
    if(i==fa[i])
        return i;
    find_father(fa[i]);//不压缩路径
}
void tarjan(int x)
{
    for(int i=1;i<=n;i++)
    if(vis[i]&&query[x][i])
    {
        query[x][i]=query[i][x]=find_father(i);
    }
    fa[x]=x;
    vis[x]=1;
    for(int i=0;i<edge[x].size();i++)
    {
        tarjan(edge[x][i]);
        fa[edge[x][i]]=x;
    }
}
int getDepth(int i,int f,int cnt)
{
    if(i==f)
        return cnt;
    getDepth(fa[i],f,cnt+1);
}
int main()
{
    int T,k,q;
    cin>>T;
    int i,a,b;
    char str1[42],str2[42];
    while(T--)
    {
        init();
        scanf("%d%d",&k,&q);
        n=0;
        for(int i=1;i<k;i++)
        {
            scanf("%s%s",str1,str2);
            if(m[str1]==0)m[str1]=++n;
            a=m[str1];
            if(m[str2]==0)m[str2]=++n;
            b=m[str2];
            edge[b].push_back(a);
            indegree[a]++;//a是孩子
        }
        //输入查询次数
        for(i=0;i<q;i++)
        {
            scanf("%s%s",str1,str2);
            p[i].a=m[str1];
            p[i].b=m[str2];
            query[p[i].a][p[i].b]=query[p[i].b][p[i].a]=1;
        }
        //找到root
        for(i=1;i<=n;i++)
        if(indegree[i]==0)
        {
            tarjan(i);break;
        }
        for(i=0;i<q;i++)
        {
            int f=query[p[i].a][p[i].b];
            int ans=getDepth(p[i].a,f,0);//求出a离f的距离
            if(p[i].b!=f) ans++;
            printf("%d\n",ans);
        }
    }
    return 0;
}


最近公共祖先(Lowest Common Ancestor, LCA)问题是指在给定一棵树中找到两个节点的最短路径上的共同祖先。Tarjan算法通常用于解决这个问题,但它的主要目的是为了发现图中的强连通分量(Strongly Connected Components, SCC),而不是直接计算LCA。不过,由于这两种问题都涉及到深度优先搜索和拓扑排序的思想,所以我们可以借助Tarjan算法的思路来理解LCATarjan算法是基于深度优先搜索和一种称为“DFS树”的数据结构。在寻找LCA的过程中,如果能找到两个节点在同一棵DFS树或它们的DFS祖先相同,那么这两个节点就是最近公共祖先。这里的关键在于维护节点的前驱(pred)和后继(succ)指针,以及一个秩(rank)数组来判断边的方向,以确定节点是否构成一个回路。 下面是 Tarjan 算法的主要步骤: 1. 初始化:对于每个未访问的节点 u,设置其秩 rank[u] = 次序号(u 的编号),低link[u] = u(表示 u 的父节点),深度 depth[u] = 0,访问次数和栈顶指针为 null。 2. DFS 递归过程:从根节点开始遍历,对每个子节点 v,执行以下操作: a. 如果 v 没有被访问过,则进行一次深度优先搜索,更新深度、秩和低link信息。 b. 记录 v 的秩 rank[v] 和当前的深度 depth[v],并将 v 加入到相应的 DFS 树。 c. 更新 v 的所有前驱和后继指针。 d. 如果 v 是回路的一部分,将 v 设置为它自身的低link,这会导致算法在下一个阶段检测到回路。 3. 完成搜索后,对每个节点 u,检查 lowlink[u] 是否等于 u,如果是,说明 u 和 u 是同一个强连通分量内的节点。同时,这也帮助我们找到 u 和其他节点的最近公共祖先,因为他们在同一棵树上。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值