题意:
给定Q(1 ≤ Q≤ 200,000)个数A1,A2… AQ,,多次求任一区间[Ai,Aj]中最大数和最小数的差。
*下面先介绍一种优秀的数据结构!线段树(Interval Tree), 查找和更新操作都是nlog2(n);
树:是一棵树,而且是一棵二叉树。
线段:树上的每个节点对应于一个线段(还是叫“区间”更容易理解,区间的起点和终点通常为整数);
同一层的节点所代表的区间,相互不会重叠。同一层节点所代表的区间,加起来是个连续的区间。
叶子节点的区间是单位长度,不能再分了。
下面我们先做一分析一下所需要的数据结构:
struct node
{
int l,r;该节点的表示区间[l,r]
int nmin,nmax;//记录区间 [l,r]上的最大值和最小值
node *pleft,*pright;//左右孩子
};
线段树三部曲:(1)先建立一个具有n 节点的线段树。
(2)然后插入节点信息,复杂度是O(log2(n));
(3)查询区间[s,e],返回结果。
下面代码:
/*
*给定Q(1 ≤ Q≤ 200,000)个数A1,A2… *AQ,,多次求任一区间[Ai,Aj]中最大数和最小数的差。
*/
#include <iostream>
#include <string>
#include <cstdio>
using namespace std;
#define MAX -0x7fffffff
#define MIN 0x7fffffff
struct node
{
int l,r;
int nmin,nmax;//record the max number or min number the range[l,r]
node *pleft,*pright;
};
int nCount=0;//record the sum of all node
int nmax,nmin;
node Tree[1000000];//其实两倍叶子节点数目-1就够了
void BuildTree(node *p,int l,int r)
{
p->l=l;
p->r=r;
p->nmax=MAX;
p->nmin=MIN;
if(l!=r)
{
nCount++;
p->pleft=Tree+nCount;
nCount++;
p->pright=Tree+nCount;
BuildTree(p->pleft,l,(l+r)>>1);
BuildTree(p->pright,((l+r)>>1)+1,r);
}
}
void Insert(node *p,int i,int v)
{
if(p->l==i&&p->r==i)
{
p->nmax=p->nmin=v;
return ;
}
//update current node
p->nmax=max(p->nmax,v);
p->nmin=min(p->nmin,v);
if(i<=(p->l+p->r)/2)
Insert(p->pleft,i,v);
else
Insert(p->pright,i,v);
}
//查询区间[s,e]中的最小值和最大值,如果更优就记在全局变量里
void query(node *p,int s,int e)
{
if(p->l==s&&p->r==e)
{
nmin=min(p->nmin,nmin);
nmax=max(p->nmax,nmax);
return ;
}
if(e<=(p->l+p->r)/2)
{
query(p->pleft,s,e);
}
else if(s>=(p->l+p->r)/2+1)
{
query(p->pright,s,e);
}
else
{
query(p->pleft,s,(p->l+p->r)/2);
query(p->pright,(p->l+p->r)/2+1,e);
}
}
int main()
{
int n,q,num;
int i,s,e;
scanf("%d%d",&n,&q);//输入节点总数,查询次数
nCount=0;
BuildTree(Tree,1,n);//建树
for(i=1; i<=n; i++)
{
scanf("%d",&num);
Insert(Tree,i,num);
}
for(i=0;i<q;i++)
{
scanf("%d%d",&s,&e);
nmax=MAX;
nmin=MIN;
query(Tree,s,e);
printf("%d\n",nmax-nmin);
}
return 0;
}