如何求解粘聚力和内摩擦角?

本文讨论了在三轴试验中,如何通过莫尔应力圆和库伦强度准则计算抗剪强度,涉及粘聚力和内摩擦角的作用,以及刘泉声(2014)的计算方法,强调了正应力、单轴压缩条件和围压对强度的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.直接由莫尔应力圆及包络线得到

由于三轴条件下,试样以宏观破裂面破坏,所以试件是以剪切的方式破坏的,根据库伦强度准则,其抗剪强度 τ m \tau_m τm 可以通过粘聚力 c c c 和内摩擦角 φ \varphi φ 确定,表示为
在这里插入图片描述
在这里插入图片描述

可见斜率为内摩擦角,截距为粘聚力

2.刘泉声(2014)的计算方法

根据库伦强度准则,有:
在这里插入图片描述
其中: σ \sigma σ为破坏面上的正应力。当以主应力形式表示时,Coulomb 强度准则变为
在这里插入图片描述
其中: b b b 代表单轴压缩条件下,试样完全剪切破坏时对应的强度;m 代表围压对轴向承载力的影响系数。这两个系数与粘聚力 c c c 和内摩擦角 φ 的关系可表示为
在这里插入图片描述
即有
在这里插入图片描述
(注意b=单轴抗压强度)

基于python tensorflow2.3的果蔬识别系统源码+模型-基于卷积神经网络的果蔬识别系统,个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计机相关专业的正在做大作业、毕业设计的学生需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 基于python tensorflow2.3的果蔬识别系统源码+模型-基于卷积神经网络的果蔬识别系统基于python tensorflow2.3的果蔬识别系统源码+模型-基于卷积神经网络的果蔬识别系统基于python tensorflow2.3的果蔬识别系统源码+模型-基于卷积神经网络的果蔬识别系统基于python tensorflow2.3的果蔬识别系统源码+模型-基于卷积神经网络的果蔬识别系统基于python tensorflow2.3的果蔬识别系统源码+模型-基于卷积神经网络的果蔬识别系统基于python tensorflow2.3的果蔬识别系统源码+模型-基于卷积神经网络的果蔬识别系统基于python tensorflow2.3的果蔬识别系统源码+模型-基于卷积神经网络的果蔬识别系统基于python tensorflow2.3的果蔬识别系统源码+模型-基于卷积神经网络的果蔬识别系统基于python tensorflow2.3的果蔬识别系统源码+模型-基于卷积神经网络的果蔬识别系统基于python tensorflow2.3的果蔬识别系统源码+模型-基于卷积神经网络的果蔬识别系统基于python tensorflow2.3的果蔬识别系统源码+模型-基于卷积神经网络的果蔬识别系统基于python tensorflow2.3的果蔬识别系统源码+模型-基于卷积神经
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

奋进的小hang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值