Sunshine_in_Moon的专栏

天行健君子以自强不息!

双线性插值

 本文转自:http://www.cnblogs.com/linkr/p/3630902.html 双线性插值,这个名字咋一听很高大上的样纸,再在维基百科上一查(见文末,我去,一堆的公式吓死人),像俺这种半文盲,看到公式脑子就懵的类型,真心给跪。虽然看着好复杂,但仔细一看道理再简单不过了,...

2015-06-30 16:44:09

阅读数 1964

评论数 0

矩阵求导

本文转自:  http://blog.csdn.net/wudisunyanzi/article/details/17346131 在网上看到有人贴了如下求导公式: Y = A * X --> DY/DX = A' Y = X * A --> DY/DX = A Y =...

2015-06-11 17:25:51

阅读数 503

评论数 0

奇异值分解

本分引用了:http://blog.csdn.net/abcjennifer/article/details/8131087 http://blog.csdn.net/google19890102/article/details/27109235 一、什么是酉矩阵? n阶复方阵U的n个列向量...

2015-06-11 11:47:22

阅读数 1293

评论数 0

点乘与叉乘

 本文转自:http://blog.csdn.net/zhiyi_2012/article/details/12972813 转载自:维基百科 在数学中,数量积(也称为内积、标量积、点积、点乘)是接受在实数R上的两个向量并返回一个实数值标量的二元运算。它是欧几里得空间的标准内积。 ...

2015-06-10 21:17:23

阅读数 1899

评论数 0

极大似然估计原理思想

本文转自:  http://blog.csdn.net/poi7777/article/details/23204789     在机器学习的领域内,极大似然估计是最常见的参数估计的方法之一,在这里整理一下它的基本原理。 极大似然估计从根本上遵循——眼见为实,这样的哲学思想。也就是...

2015-06-09 19:37:49

阅读数 9305

评论数 0

什么是NP问题?

本文转自:  http://blog.csdn.net/panpan639944806/article/details/8146206 什么是NP问题 概念: 在计算机学科中,存在多项式时间的算法的一类问题,称之为P类问题;而像梵塔问题、推销员旅行问题、(命题表达式)可满足问题这类,...

2015-06-08 20:27:38

阅读数 782

评论数 0

最小二乘法直线拟合简介

 本文转自:http://blog.csdn.net/Naruto_ahu/article/details/8694366 曲线拟合中最基本和最常用的是直线拟合。设x和y之间的函数关系为:                    y=a+bx 式中有两个待定参数,a代表截距,b代表斜率。...

2015-05-21 22:15:07

阅读数 1613

评论数 0

高斯牛顿法

 本文转自:http://blog.csdn.net/dourenyin/article/details/8606883 对于多维函数 故函数的雅克比矩阵为 如现有 , 给定一个初始值,则其每一次的迭代增量为   代价函数用于评估迭代终止条件:

2015-05-17 21:40:38

阅读数 963

评论数 0

最小二乘法(一般形式和矩阵形式)

 转自:作者:金良(golden1314521@gmail.com) csdn博客:http://blog.csdn.net/u012176591 1.线性代数模型 首先给出最小二乘解的矩阵形式的公式: 推导过程: 条件: 矩阵必...

2015-05-17 21:38:38

阅读数 23053

评论数 2

泰勒级数、欧拉公式、三角函数

 本文转自:http://blog.csdn.net/shihaijiang1987/article/details/6690992 泰勒级数的定义: 若函数f(x)在点的某一临域内具有直到(n+1)阶导数,则在该邻域内f(x)的n阶泰勒公式为: 其中:,称为拉格朗日余项。 ...

2015-05-17 21:04:21

阅读数 1926

评论数 0

特征值和特征向量的实际意义

本文转自知乎大牛。 从定义出发,Ax=cx:A为矩阵,c为特征值,x为特征向量。 矩阵A乘以x表示,对向量x进行一次转换(旋转或拉伸)(是一种线性转换),而该转换的效果为常数c乘以向量x(即只进行拉伸)。 我们通常求特征值和特征向量即为求出该矩阵能使哪些向量(当然是特征向量)只发生拉伸,使其...

2015-05-15 21:18:39

阅读数 16303

评论数 0

点到直线的距离

 本文转自:http://blog.csdn.net/gisoracle/article/details/4645094 /****点到直线的距离***          * 过点(x1,y1)和点(x2,y2)的直线方程为:KX -Y + (x2y1 - x1y2)/(x2-x1) =...

2015-05-03 10:31:39

阅读数 623

评论数 1

提示
确定要删除当前文章?
取消 删除
关闭
关闭