Sunshine_in_Moon
码龄8年
  • 1,662,381
    被访问
  • 112
    原创
  • 707,770
    排名
  • 553
    粉丝
  • 0
    铁粉
关注
提问 私信

个人简介:对计算机视觉,深度学习方向很感兴趣,愿意和大家分享。现在学习大规模人脸识别,人脸检测等相关工作,希望得到大家的帮助!

  • 加入CSDN时间: 2014-12-05
博客简介:

Sunshine_in_Moon的专栏

博客描述:
天行健君子以自强不息!
查看详细资料
个人成就
  • 获得377次点赞
  • 内容获得374次评论
  • 获得624次收藏
创作历程
  • 13篇
    2019年
  • 5篇
    2018年
  • 2篇
    2017年
  • 75篇
    2016年
  • 257篇
    2015年
成就勋章
TA的专栏
  • Caffe2填坑系列
    8篇
  • openCV
    90篇
  • C++
    44篇
  • 算法
    21篇
  • 图像处理
    28篇
  • 错题本
    49篇
  • openCV函数
    20篇
  • 数学基础
    12篇
  • 机器学习
    33篇
  • Python
    52篇
  • 人脸识别
    13篇
  • Linux
    15篇
  • 人脸检测
    5篇
  • 深度学习
    20篇
  • caffe
    40篇
  • 人脸对齐
    2篇
  • Python模块学习系列
    7篇
  • 机器学习&深度学习实践(python版)系列
    11篇
  • Mxnet学习系列
    5篇
  • boost
    5篇
  • OpenBlas
    1篇
  • Caffe2
    11篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习神经网络tensorflowpytorch图像处理
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

symbol lookup error: xxx undefined symbol xxx

我在编译一个小工程时,编译过程并没有报错,但是在运行报了如下错误:undefined symbol N2cv3Mat20updateContinuityFlagEv。解决此类问题的思路可以从如下几个方面入手:库没有正确连接,但如果是这个问题,我们在编译时往往就会报错。库的版本不对,比如我们使用的第三方库其依赖的是OpenCV2,但是我们自己的工程使用的时OpenCV3,这时也会有这个问题。...
原创
发布博客 2019.12.09 ·
571 阅读 ·
0 点赞 ·
0 评论

OpenCV : undefined reference to cv::imread()

最近在编译一个小工程时遇到了一个OpenCV的问题,如标题所示找不到函数接口。其实,我们一般遇到“undefined reference to”的错误首先想到的肯定是相关的库没有正确连接。但是我遇到的问题要比这个奇怪的多。下面记录下我的解决思路,做个笔记防止后面在遇到相同的问题。检查库是否正确连接ldd ****.so可检查某个库的依赖情况,重点看那些找不到的库。如果我们发现某个库找不到,...
原创
发布博客 2019.12.09 ·
6426 阅读 ·
1 点赞 ·
0 评论

Caffe2填坑系列(10)----编译成功,在python中使用时报”key already registered. Offending key: ImageInput“

原因:ImageInput这个Op被注册了多次,我在编写自己的.cc文件时,是以image_input.cc为模板,前面我都改成了自己Op的名字,包括REGISTER_CPU_OPERATOR(),OPERATOR_SCHEMA().唯独没有改NO_GRADIENT(),造成了上述错误。具体代码可参考core/register.h...
原创
发布博客 2019.05.20 ·
824 阅读 ·
1 点赞 ·
0 评论

Caffe2填坑系列(9)----错误提示“undefined reference to caffe2::CUDAContext::“

一般出现”undefined reference to…“的错误是找不到相应的库造成的,但我自己在编写完一个Op后编译时出现了这个问题,经过一天的查找终于找到了根源所在,知道原因后自己都无语了,原来在caffe2中文件的命名是有规则了,不能胡乱起名。我错将_op_gpu.cc,写成了_gpu_op.cc首先,看一下在image/CMakeLists.txt中的设置if(USE_OPENCV ...
原创
发布博客 2019.05.14 ·
360 阅读 ·
0 点赞 ·
0 评论

Caffe2填坑系列(8)----获得Op输入和输出blob的个数的两种方法

构造函数中,任何一个Op都是公有继承Operator,构造函数一般是 C++:Operator<Context>(def,ws),…可以看到每一个构造函数里都有一个OperatorDef的对象def,OperatorDef在protot里进行定义,主要时组着里一个Op的一些信息,我们可以调用def.input_size()或def.output_size()获得输入输出的...
原创
发布博客 2019.05.12 ·
351 阅读 ·
0 点赞 ·
0 评论

Caffe2填坑系列(7)----make时“cannot find -lopencv_dep_cudart”

在CmakeList.txt 中OpenCV之前,加上set(CUDA_USE_STATIC_CUDA_RUNTIME OFF)或则在make时make -D CUDA_USE_STATIC_CUDA_RUNTIME=OFF
原创
发布博客 2019.05.08 ·
337 阅读 ·
0 点赞 ·
0 评论

Caffe2填坑系列(6)----gcc编译报错:程序中有游离的“\357”、"\273"、"\277"等

原因一:程序中使用了中文的标点符号程序(*.c,*.h)中使用了中文的标点符号(全角),比如;,},+。改成英文的标点半角符号就行了。甚至有时候空格也会出现类似错误,删掉该空格 重新输入。vim里面做类似替换还是很容易的。如何看到报错的符号?od -c hello.c > log.txt在log中就能看到符号了原因二:文件存储格式有问题如果替换成了英文标点还出错的话,还...
原创
发布博客 2019.05.05 ·
167 阅读 ·
0 点赞 ·
0 评论

Caffe2填坑系列(5)----获取输入输出数据----CPU与GPU稍有不同

CPUconst auto& a = Input(0)获取第一个输入给a,a的类型是Tensorauto* b = Output(0)获取第一个输入的指针赋给b获取指向Tensor内数据的指针:const auto* a1 = a.template data(),需要注意两点1.data()前的template ;2、输入一般是只读,我们不希望改变起内部数据,data()返回的是...
原创
发布博客 2019.05.02 ·
356 阅读 ·
0 点赞 ·
0 评论

Caffe2填坑系列(4)----指定梯度计算时的输入和输出

class GetInterpGradient : public GradientMakerBase{ using GradientMakerBase::GradientMakerBase; vector<OperatorDef> GetGradientDefs() override{ return SingleGradientDef( ...
原创
发布博客 2019.04.29 ·
196 阅读 ·
0 点赞 ·
0 评论

Caffe2填坑系列(3)----OPERATOR_SCHEMA()

operator_schema.hNumInputs()// Functions to set the property of the operator schemas. // Sets the number of inputs, either a fixed number or a min and a max. /** * @brief A single in...
原创
发布博客 2019.04.25 ·
181 阅读 ·
0 点赞 ·
0 评论

Caffe2填坑系列(2)----获取数据或参数的方法

pad_end_(OperatorBase::template GetSingleArgument(“pad_end”,0))如果参数“pad_end”没有提供,则采用0为默认值获取Op的输入和输出const auto& X = Input(0):获取第一个输入,注意输入一般为常量类型,因为我们一般只读不更改数据。auto* Y = Output(0): 指向第一个输出,不能为常...
原创
发布博客 2019.04.24 ·
172 阅读 ·
0 点赞 ·
0 评论

Caffe2填坑系列(1)----三个头文件

已经有将近一年的时间没有写博客了。过去的一年了,学习了很多新的东西,在这里和大家分享一下,希望对你有所帮助。特别声明:我在这个系列中所使用的Caffe2,不是已经合并进Pytorch的Caffe2,而是为合并前的。这两者的差别还是很大的。今天,作为第一讲,内容可以说非常少。- #include "caffe2/core/context.h"选择是CPU或者GPU- #include "...
原创
发布博客 2019.04.19 ·
214 阅读 ·
0 点赞 ·
0 评论

Caffe To Caffe2 Python脚本caffe_translator.py详细注释

将Caffe的模型转换成Caffe2模型,官方提供了一个caffe_translator.py脚本。在此我做了详细的注释。## @package caffe_translator# Module caffe2.python.caffe_translator#!/usr/bin/env python2import argparseimport copyimport loggingim...
原创
发布博客 2019.01.06 ·
711 阅读 ·
1 点赞 ·
0 评论

对一般分类CNN的FC2层中的权值W的一点儿思考

最近又重新看了L-Softmax Loss 和 A-Softmax Loss.对对一般分类CNN的FC2层中的权值W,有了自己的一点想法,与大家分享一下。如果大家对我提出的第6,7的两个问题,有自己的想法,希望给我留言,大家相互学习。 邮箱451413025@qq.com...
原创
发布博客 2018.05.30 ·
899 阅读 ·
0 点赞 ·
0 评论

利用sklearn画ROC曲线python代码个人理解

参考链接: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html#sphx-glr-auto-examples-model-selectio
原创
发布博客 2018.01.13 ·
5754 阅读 ·
0 点赞 ·
1 评论

LMDB To Picture by Python

自己写的一个小代码,稍后会传到GitHub上,这里分享给大家!# coding: utf-8import lmdbimport numpy as npimport caffe_pb2import cv2dataDir = '***_lmdb'#lmdb文件夹env = lmdb.open(dataDir,readonly=True,lock=True)datum = c
原创
发布博客 2018.01.13 ·
406 阅读 ·
0 点赞 ·
0 评论

glog和gflags两个模块的使用实例

在Caffe中convert_imageset.cpp中有这两个模块的使用,我只是做了一点注释。我觉得学习别人的代码,是一个很好的方法。 算了废话不多说了,直接上代码吧!// This program converts a set of images to a lmdb/leveldb by storing them// as Datum proto buffers.// Usage://
原创
发布博客 2018.01.13 ·
1129 阅读 ·
0 点赞 ·
0 评论

Boost-python封装Cpp代码供Python调用

好久没有写博客了,今天把自己有道云笔记上东西分享给大家。Boost::python的使用可以参考我的一篇博客,这里只列举几个简单的例子,对该篇博客的补充。封装一个单一的函数#include<iostream>#include<boost/python/def.hpp>#include<boost/python/module.hpp>#include<boost/python/args.hpp>
原创
发布博客 2018.01.13 ·
1341 阅读 ·
1 点赞 ·
2 评论

Caffemodel之C++修改参数

对Caffemodel的解析,更直接的说是对protobuf的解析。对Protobuf来说最重要的有三个文件,***.proto,***.pb.h,和***.pb.cc。基本的操作流程是首先写***.proto文件,然后编译出***.pb.h和***.pb.cc两个文件,我们就可以对Protobuf进行读写和修改了。今天这里,我只想总结一下我在修改Caffemodel时遇到的一些坑,以及解
原创
发布博客 2017.12.09 ·
1374 阅读 ·
0 点赞 ·
1 评论

RCNN个人的几点见解

已经有将近一年的时间没有写博客了,说来真是惭愧。最近想学习一点目标检测的东西,今天看了RCNN,请教了同事一些不懂得地方,在这里做一个简短的总结。其实,网上种总结已经非常多了,我这里只想写点我个人的理解。方便以后回归使用。废话少说,直接进入正题。1、选择候选区域的算法,论文中使用的是“selective search”,我记得很久之前看这篇论文时,我还在网上找到过这个算法的源码,跑了一下,效果
原创
发布博客 2017.11.17 ·
421 阅读 ·
0 点赞 ·
0 评论
加载更多