1015 德才论 (25分)
宋代史学家司马光在《资治通鉴》中有一段著名的“德才论”:“是故才德全尽谓之圣人,才德兼亡谓之愚人,德胜才谓之君子,才胜德谓之小人。凡取人之术,苟不得圣人,君子而与之,与其得小人,不若得愚人。”
现给出一批考生的德才分数,请根据司马光的理论给出录取排名。
输入格式:
输入第一行给出 3 个正整数,分别为:N(≤10^5 ),即考生总数;L(≥60),为录取最低分数线,即德分和才分均不低于 L 的考生才有资格被考虑录取;H(<100),为优先录取线——德分和才分均不低于此线的被定义为“才德全尽”,此类考生按德才总分从高到低排序;才分不到但德分到线的一类考生属于“德胜才”,也按总分排序,但排在第一类考生之后;德才分均低于 H,但是德分不低于才分的考生属于“才德兼亡”但尚有“德胜才”者,按总分排序,但排在第二类考生之后;其他达到最低线 L 的考生也按总分排序,但排在第三类考生之后。
随后 N 行,每行给出一位考生的信息,包括:准考证号 德分 才分,其中准考证号为 8 位整数,德才分为区间 [0, 100] 内的整数。数字间以空格分隔。
输出格式:
输出第一行首先给出达到最低分数线的考生人数 M,随后 M 行,每行按照输入格式输出一位考生的信息,考生按输入中说明的规则从高到低排序。当某类考生中有多人总分相同时,按其德分降序排列;若德分也并列,则按准考证号的升序输出。
输入样例:
14 60 80
10000001 64 90
10000002 90 60
10000011 85 80
10000003 85 80
10000004 80 85
10000005 82 77
10000006 83 76
10000007 90 78
10000008 75 79
10000009 59 90
10000010 88 45
10000012 80 100
10000013 90 99
10000014 66 60
输出样例:
12
10000013 90 99
10000012 80 100
10000003 85 80
10000011 85 80
10000004 80 85
10000007 90 78
10000006 83 76
10000005 82 77
10000002 90 60
10000014 66 60
10000008 75 79
10000001 64 90
这题最大的问题在于时间复杂度,由于本人太菜,习惯性用了冒泡排序,导致测试点3、4一直显示运行超时。一开始的冒泡排序如下:
void BubbleSort(struct student *s,int len)
{
//按总分降序排列,总分相同时,按德分降序排列,德分相同,按考号升序排列
int i,j;
int flag; //记录一趟是否发生交换,若无,说明已有序,不必再比较
struct student a;
for(i = 0; i < len-1; i++)
{
flag = 0;
pos = 0;
for(j = 0; j < len-1-i; j++)
{
if(s[j].sum < s[j+1].sum)
{
a = s[j];
s[j] = s[j+1];
s[j+1] = a;
flag = 1;
}
else if(s[j].sum == s[j+1].sum)
{
if(s[j].mor < s[j+1].mor)
{
a = s[j];
s[j] = s[j+1];
s[j+1] = a;
flag = 1;
}
else if(s[j].mor == s[j+1].mor)
{
if(s[j].num > s[j+1].num)
{
a = s[j];
s[j] = s[j+1];
s[j+1] = a;
flag = 1;
}
}
}
}
if(flag == 0)
break;
}
}
设置了一个flag判断本趟是否交换,若flag = 0,说明未交换,即已有序,否则继续交换,测试点显示运行超时。
之后百度了一下冒泡排序的优化算法:记下最后一次交换的位置,后边没有交换,必然是有序的,然后下一次排序从第一个比较到上次记录的位置结束即可。详细如图: (参考自: 【排序】:冒泡排序以及三种优化)
改进后冒泡排序如下:
void BubbleSort(struct student *s,int len)
{
//按总分降序排列,总分相同时,按德分降序排列,德分相同,按考号升序排列
int i,j;
int flag; //记录一趟是否发生交换,若无,说明已有序,不必再比较
int pos; //记录每趟最后一个交换的位置,作为下一趟的结束点,提高效率
int k = len-1; //每趟交换的结束点
struct student a;
for(i = 0; i < len-1; i++)
{
flag = 0;
pos = 0;
for(j = 0; j < k; j++)
{
if(s[j].sum < s[j+1].sum)
{
a = s[j];
s[j] = s[j+1];
s[j+1] = a;
flag = 1;
pos = j;
}
else if(s[j].sum == s[j+1].sum)
{
if(s[j].mor < s[j+1].mor)
{
a = s[j];
s[j] = s[j+1];
s[j+1] = a;
flag = 1;
pos = j;
}
else if(s[j].mor == s[j+1].mor)
{
if(s[j].num > s[j+1].num)
{
a = s[j];
s[j] = s[j+1];
s[j+1] = a;
flag = 1;
pos = j;
}
}
}
}
if(flag == 0)
break;
k = pos;
}
}
提交结果仍然为运行超时。没办法了,只好换排序算法了。选择的是快速排序。
快速排序的原理是:
设要排序的数组是A[0]……A[N-1],首先任意选取一个数据(通常选用数组的第一个数)作为关键数据,然后将所有比它小的数都放到它左边,所有比它大的数都放到它右边。
一趟快速排序的算法是:
1)设置两个变量i、j,排序开始的时候:i=0,j=N-1;
2)以第一个数组元素作为关键数据,赋值给key,即key=A[0];
3)从j开始向前搜索,即由后开始向前搜索(j–),找到第一个小于key的值A[j],将A[j]和A[i]的值交换;
4)从i开始向后搜索,即由前开始向后搜索(i++),找到第一个大于key的A[i],将A[i]和A[j]的值交换;
5)重复第3、4步,直到i=j; (3,4步中,没找到符合条件的值,即3中A[j]不小于key,4中A[i]不大于key的时候改变j、i的值,使得j=j-1,i=i+1,直至找到为止。找到符合条件的值,进行交换的时候i, j指针位置不变。另外,i==j这一过程一定正好是i+或j-完成的时候,此时令循环结束)。
即设置三个变量:i、j、key。对于 i – key 范围内,若对应值 i > key,则交换,对于key – j,若对应值 key > j,则交换。
对于本题而言,按总分降序排列,总分相同时,按德分降序排列,德分相同,按考号升序排列。即在 i – key 范围内:若:1 总分 i < key ;2 总分相同,德分 i < key;3 总分德分相同,考号 i > key ,三者满足其一交换。在 key – j 范围内:若:1 总分 key < j ;2 总分相同,德分 key < j;3 总分德分相同,考号 key > j ,三者满足其一交换。即 Compare(s[i],key) == 1,Compare(key,s[j]) ==1时交换,否则 j 前移,i 后移( j --、i ++)。
为了使代码结构更清晰,这时增加了一个函数体Compare用于判断情况下进行交换。具体代码如下:
int Compare(struct student s1,struct student s2)
{
//按总分降序排列,总分相同时,按德分降序排列,德分相同,按考号升序排列
//用于判断是否交换
//有三种情况:
//1 总分 1 < 2
//2 总分相同,德分 1 < 2
//3 总分相同,德分也相同,考号 1 > 2
//当返回 1 时,交换,返回 0 时,不交换
if(s1.sum < s2.sum)
return 1;
if(s1.sum == s2.sum && s1.mor < s2.mor)
return 1;
if(s1.sum == s2.sum && s1.mor == s2.mor && s1.num > s2.num)
return 1;
return 0;
}
void Print(struct student *s,int len)
{
int i;
for(i = 0; i < len; i++)
printf("%d %d %d\n",s[i].num,s[i].mor,s[i].lit);
}
void QuickSort(struct student *s,int left,int right)
{
if(left >= right)
return ;
int i,j;
struct student key;
i = left;
j = right;
key = s[i];
while(i < j)
{
while(i < j && Compare(key,s[j]) == 0)
j--;
s[i] = s[j];
while(i < j && Compare(s[i],key) == 0)
i++;
s[j] = s[i];
}
s[i] = key;
QuickSort(s,left,i-1);
QuickSort(s,i+1,right);
}
完整代码如下:包括冒泡排序和快速排序,二者都可以得出正确结果,但冒泡排序的时间复杂度无法通过测试。
#include<stdio.h>
struct student
{
int num;
int mor;
int lit;
int sum;
};
void BubbleSort(struct student *s,int len);
void Judge(struct student *s,int N,int L,int H);
void QuickSort(struct student *s, int len,int right);
void Print(struct student *s,int len);
int Compare(struct student s1,struct student s2);
int Compare(struct student s1,struct student s2)
{
//按总分降序排列,总分相同时,按德分降序排列,德分相同,按考号升序排列
//用于判断是否交换
//有三种情况:
//1 总分 1 < 2
//2 总分相同,德分 1 < 2
//3 总分相同,德分也相同,考号 1 > 2
//当返回 1 时,交换,返回 0 时,不交换
if(s1.sum < s2.sum)
return 1;
if(s1.sum == s2.sum && s1.mor < s2.mor)
return 1;
if(s1.sum == s2.sum && s1.mor == s2.mor && s1.num > s2.num)
return 1;
return 0;
}
void Print(struct student *s,int len)
{
int i;
for(i = 0; i < len; i++)
printf("%d %d %d\n",s[i].num,s[i].mor,s[i].lit);
// printf("%d %d %d %d\n",s[i].num,s[i].mor,s[i].lit,s[i].sum);
}
void QuickSort(struct student *s,int left,int right)
{
if(left >= right)
return ;
int i,j;
struct student key;
i = left;
j = right;
key = s[i];
while(i < j)
{
while(i < j && Compare(key,s[j]) == 0)
j--;
s[i] = s[j];
while(i < j && Compare(s[i],key) == 0)
i++;
s[j] = s[i];
}
s[i] = key;
QuickSort(s,left,i-1);
QuickSort(s,i+1,right);
}
void BubbleSort(struct student *s,int len)
{
//按总分降序排列,总分相同时,按德分降序排列,德分相同,按考号升序排列
int i,j;
int flag; //记录一趟是否发生交换,若无,说明已有序,不必再比较
int pos; //记录每趟最后一个交换的位置,作为下一趟的结束点,提高效率
int k = len-1; //每趟交换的结束点
struct student a;
for(i = 0; i < len-1; i++)
{
flag = 0;
pos = 0;
for(j = 0; j < k; j++)
{
if(s[j].sum < s[j+1].sum)
{
a = s[j];
s[j] = s[j+1];
s[j+1] = a;
flag = 1;
pos = j;
}
else if(s[j].sum == s[j+1].sum)
{
if(s[j].mor < s[j+1].mor)
{
a = s[j];
s[j] = s[j+1];
s[j+1] = a;
flag = 1;
pos = j;
}
else if(s[j].mor == s[j+1].mor)
{
if(s[j].num > s[j+1].num)
{
a = s[j];
s[j] = s[j+1];
s[j+1] = a;
flag = 1;
pos = j;
}
}
}
}
if(flag == 0)
break;
k = pos;
}
}
void Judge(struct student *s,int N,int L,int H)
{
// 1 考生总数N,录取最低分数线L>60,优先录取线H<100
// 2 德才分均不得低于L
// 3 第一类考生:德才分均>=H
// 4 第二类考生:德>=H
// 5 第三类考生:德才<H && 德>=才
// 6 第四类考生:德才>L
// 7 以上均分类按总分降序排列,总分相同时,按德分降序排列,
// 德分相同,按考号升序排列
struct student a[N],b[N],c[N],d[N]; //分别存储四类考生
int i;
int m,n,j,k;
m = n = j = k = 0;
for(i = 0; i < N; i++)
{
//第一类考生:德才分均>=H
if(s[i].mor >= H && s[i].lit >= H)
a[m++] = s[i];
//第二类考生:德>=H
else if(s[i].mor >= H && s[i].lit >= L)
b[n++] = s[i];
//第三类考生:德才<H && 德>=才
else if(s[i].mor >= L && s[i].lit >= L && s[i].mor >= s[i].lit)
c[j++] = s[i];
//第四类考生:德才>L
else if(s[i].mor >= L && s[i].lit >= L)
d[k++] = s[i];
}
printf("%d\n",m+n+j+k);
printf("QuickSort:\n");
QuickSort(a,0,m-1);
QuickSort(b,0,n-1);
QuickSort(c,0,j-1);
QuickSort(d,0,k-1);
Print(a,m);
Print(b,n);
Print(c,j);
Print(d,k);
printf("BubbleSort:\n");
BubbleSort(a,m);
BubbleSort(b,n);
BubbleSort(c,j);
BubbleSort(d,k);
Print(a,m);
Print(b,n);
Print(c,j);
Print(d,k);
}
int main()
{
int N,L,H;
scanf("%d%d%d",&N,&L,&H);
struct student s[N];
int i;
for(i = 0; i < N; i++)
{
scanf("%d%d%d",&s[i].num,&s[i].mor,&s[i].lit);
s[i].sum = s[i].mor + s[i].lit;
}
Judge(s,N,L,H);
return 0;
}
这道题对于我来说的意义有以下几点:
1、各种排序算法的学习,它们的时间复杂度、算法,优化方法等等。咳,以前偷懒,做题目差不多都会,实践写代码从来只会冒泡排序,现在来还债了。苦笑
2、函数体的重要性。一个是使代码结构更清晰,增强它的可读性。另一个就是可以使判断更加简单。一开始判断交换条件时没有分出一个函数体,冒泡排序还好,快速排序那里完全搅成一团乱麻,完全不知道交换条件是什么,勉强写出来对不对另说,首先就拖了一长串,而分出函数体后,compare函数体内根据交换条件返回不同值,sort函数体中直接判断返回值就行了。当然,写的时候还是饶了很久,主要还是原理不够清楚。
唉,这题磕磕绊绊写出来了,感觉还是不行,过两天再写一遍吧