具体数学
sunshine_lyn
欢迎访问个人博客: https://www.elainelv.github.io/
展开
-
具体数学之二项式系数1
本章讲述的是二项式系数,包含了一大堆记不住的公式@<@1.(rk)={r(r−1)⋯(r−k+1)k(k−1)⋯(1)=rkk!,k⩾00,k<0\left( \begin{array}{l}{r} \\ {k}\end{array}\right)=\left\{\begin{array}{l}{\frac{r(r-1) \cdots(r-k+1)}{k(k-1) \cd...原创 2019-05-09 22:05:32 · 747 阅读 · 0 评论 -
具体数学之数论
1.整除性:m\n⇔m>0,并且m可以整除nm \backslash n \Leftrightarrow m > 0,并且m可以整除nm\n⇔m>0,并且m可以整除n欧几里得算法求解最大公约数gcd(0,n)=n\operatorname{gcd}(0, n)=ngcd(0,n)=ngcd(m,n)=gcd(n ...原创 2019-05-03 14:43:19 · 464 阅读 · 0 评论 -
具体数学之和式和递归式(SUMS AND RECURRENCES)
我们对下述和式Sn=∑k=0nakS _ { n } = \sum _ { k = 0 } ^ { n } a _ { k }Sn=k=0∑nak应该很熟悉,可以想到高等数学中的级数,用求导之类的方法计算。那么它和递归式有何联系呢?齐时上面的求和表达式可以转化为下述递归表达式:S0=a0S _ { 0 } = a _ { 0 }S0=a0Sn=Sn−1+anS _ { n } = ...原创 2019-03-24 21:47:17 · 678 阅读 · 0 评论 -
具体数学之二项式系数2
又是一大堆公式来袭~~Sm=∑k≤m(m−1+rk)xkym−k+∑k⩽m(m−1+rk−1)xkym−kS_{m}=\sum_{k \leq m} \left( \begin{array}{c}{m-1+r} \\ {k}\end{array}\right) x^{k} y^{m-k}+\sum_{k \leqslant m} \left( \begin{array}{c}{m-1+r} ...原创 2019-05-10 14:45:09 · 598 阅读 · 0 评论